In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
In this paper, we will show that the Modified SP iteration can be used to approximate fixed point of contraction mappings under certain condition. Also, we show that this iteration method is faster than Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Furthermore, by using the same condition, we shown that the Picard S- iteration method converges faster than Modified SP iteration and hence also faster than all Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Finally, a data dependence result is proven for fixed point of contraction mappings with the help of the Modified SP iteration process.
In this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.
The purpose of this paper is to study a new class of fuzzy covering dimension functions, called fuzzy
In this paper, we generalized the principle of Banach contractive to the relative formula and then used this formula to prove that the set valued mapping has a fixed point in a complete partial metric space. We also showed that the set-valued mapping can have a fixed point in a complete partial metric space without satisfying the contraction condition. Additionally, we justified an example for our proof.
The aim of this paper is to introduce and study the concept of SN-spaces via the notation of simply-open sets as well as to investigate their relationship to other topological spaces and give some of its properties.
The research addressed the formal functions resulting from the use of various guiding signs in the design of the interior spaces of airports in various pragmatic, expressive and psychological aspects. The aim is to identify the functions the guiding signs perform in facilitating and organizing the travelers' movement and satisfying the needs of the visitors and users of the unfamiliar places which they intend to visit, the nature of the services offered by these signs as one of the important parts within their general design. The research also identified the concept and types of signs as a means of visual communication and how to employ them in the design of the airports public spaces, and what are the criteria of their use and fu
... Show More. Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper,we introduce the generalized Cayley graph denoted by which is a graph with a vertex set consisting of all column matrices in which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of the similar entry of and is matrix with all entries in , is the transpose of and and m . We aim to provide some basic properties of the new graph and determine the structure of when is a complete graph for every , and n, m .
In this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.