Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus, the exact way by which the network will hide the information is unable to be known to anyone who does not have the weights. The second goal is to increase hiding capacity, which has been achieved by using CNN as a strategy to make decisions to determine the best areas that are redundant and, as a result, gain more size to be hidden. Furthermore, In the proposed model, CNN is concurrently trained to generate the revealing and hiding processes, and it is designed to work as a pair mainly. This model has a good strategy for the patterns of images, which assists to make decisions to determine which is the parts of the cover image should be redundant, as well as more pixels are hidden there. The CNN implementation can be done by using Keras, along with tensor flow backend. In addition, random RGB images from the "ImageNet dataset" have been used for training the proposed model (About 45000 images of size (256x256)). The proposed model has been trained by CNN using random images taken from the database of ImageNet and can work on images taken from a wide range of sources. By saving space on an image by removing redundant areas, the quantity of hidden data can be raised (improve capacity). Since the weights and model architecture are randomized, the actual method in which the network will hide the data can't be known to anyone who does not have the weights. Furthermore, additional block-shuffling is incorporated as an encryption method to improved security; also, the image enhancement methods are used to improving the output quality. From results, the proposed method has achieved high-security level, high embedding capacity. In addition, the result approves that the system achieves good results in visibility and attacks, in which the proposed method successfully tricks observer and the steganalysis program.
In this work, the effect of different particle size on the nonlinear optical properties of silver nanoparticles in de-ionized water was studied. The experimental observation of the far field diffraction patterns by CCD camera in two and three dimensions. The maximum change of nonlinear refractive index and the relative phase shift were calculated. The self-defocusing technique was used with a continuous-wave radiation from DPSS Blue laser .The wavelength is 473 nm with an output power of 270 mW. All the Ag colloids samples containing the sizes 15, 30, 50, and 70 nm of silver nanoparticles used in the study were chemically prepared. It was found that the nonlinear refractive index is a particle size dependent and of the order of 10-7 cm2/
... Show MoreChemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemi
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreThe possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.
Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.
Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .
Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreEconomic performance is one of the most important indicators of economic activity and with the performance of the economy progress varied sources of output and increase economic growth rates and per capita national income, and to recover the business environment and increase investment rates and rising effectiveness of the financial and monetary institutions and credit market. Which leads to increased employment rates and reducing unemployment rates and the elimination of many of the social problems and improve the average per capita income as well as improve the level of national income.
The input / output tables is a technique mathematical indicates economic performance
... Show MoreThe goal (purpose) from using development technology that require mathematical procedure related with high Quality & sufficiency of solving complex problem called Dynamic Programming with in recursive method (forward & backward) through finding series of associated decisions for reliability function of Pareto distribution estimator by using two approach Maximum likelihood & moment .to conclude optimal policy
Microbial Desalination Cell (MDC) is capable of desalinating seawater, producing electrical power and treating wastewater. Previously, chemical cathodes were used, which were application restrictions due to operational expenses are quite high, low levels of long-term viability and high toxicity. A pure oxygen cathode was using, external resistance 50 and 150 k Ω were studied with two concentrations of NaCl in the desalination chamber 15-25 g/L which represents the concentration of brackish water and sea water. The highest energy productivity was obtained, which amounted to 44 and 46 mW/m3, and the maximum limit for desalination of saline water was (31% and 26%) for each of 25 g / L and 15 g / L, respectively, when using an ex
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreTitanium alloys are broadly used in the medical and aerospace sectors. However, they are categorized within the hard-to-machine alloys ascribed to their higher chemical reactivity and lower thermal conductivity. This aim of this research was to study the impact of the dry-end-milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. This research aims to study the impact of the dry-end milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. Also, it seeks to develop a new hybrid neural model based on the training back propagation neural network (BPNN) with swarm optimization-gravitation search hybrid algorithms (PSO-GS