Preferred Language
Articles
/
bsj-5112
Advanced Intelligent Data Hiding Using Video Stego and Convolutional Neural Networks
...Show More Authors

Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file.  In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus, the exact way by which the network will hide the information is unable to be known to anyone who does not have the weights.  The second goal is to increase hiding capacity, which has been achieved by using CNN as a strategy to make decisions to determine the best areas that are redundant and, as a result, gain more size to be hidden. Furthermore, In the proposed model, CNN is concurrently trained to generate the revealing and hiding processes, and it is designed to work as a pair mainly. This model has a good strategy for the patterns of images, which assists to make decisions to determine which is the parts of the cover image should be redundant, as well as more pixels are hidden there. The CNN implementation can be done by using Keras, along with tensor flow backend. In addition, random RGB images from the "ImageNet dataset" have been used for training the proposed model (About 45000 images of size (256x256)). The proposed model has been trained by CNN using random images taken from the database of ImageNet and can work on images taken from a wide range of sources. By saving space on an image by removing redundant areas, the quantity of hidden data can be raised (improve capacity). Since the weights and model architecture are randomized, the actual method in which the network will hide the data can't be known to anyone who does not have the weights. Furthermore, additional block-shuffling is incorporated as an encryption method to improved security; also, the image enhancement methods are used to improving the output quality. From results, the proposed method has achieved high-security level, high embedding capacity. In addition, the result approves that the system achieves good results in visibility and attacks, in which the proposed method successfully tricks observer and the steganalysis program.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2002
Journal Name
Iraqi Journal Of Physics
New DCT-Based Image Hiding Technique
...Show More Authors

A new technique for embedding image data into another BMP image data is presented. The image data to be embedded is referred to as signature image, while the image into which the signature image is embedded is referred as host image. The host and the signature images are first partitioned into 8x8 blocks, discrete cosine transformed “DCT”, only significant coefficients are retained, the retained coefficients then inserted in the transformed block in a forward and backward zigzag scan direction. The result then inversely transformed and presented as a BMP image file. The peak signal-to-noise ratio (PSNR) is exploited to evaluate the objective visual quality of the host image compared with the original image.

View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Al-mustansiriyah Journal Of Science
Encrypting a Text by Using Affine Cipher and Hiding it in the Colored Image by Using the Quantization stage
...Show More Authors

ST Alawi, NA Mustafa, Al-Mustansiriyah Journal of Science, 2013

View Publication
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An improved neurogenetic model for recognition of 3D kinetic data of human extracted from the Vicon Robot system
...Show More Authors

These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that.  The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks
...Show More Authors

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2010
Journal Name
Thesis
Design and Implementation proposed Encoding and Hiding Text in an Image
...Show More Authors

NAA Mustafa, University of Sulaimani, Ms. c Thesis, 2010 - Cited by 4

View Publication
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Design and construction of Video extractor
...Show More Authors

Design and construction of video extractor circuit require an understanding of several parameters, which include: Selector circuit, extracting circuit which contains sampling signal and multiplexing. At each radar pulse, the video signal is fed to one of the selector. The fast filter has a pass –band from 190 Hz to 1800 Hz. These frequencies correspond to targets having radial velocities laying between and 10 Kph and 200 Kph.Slow filter: 60 Hz to 230 Hz for radial velocities laying between 3.5 and 13 Kph.The video- extractor is organized in four PCB CG (A-B-C-D) each one having 16 selector. The sampling signal (ADS) (1-2-3-4) control the 4-line-to-16-line decoders. 8 multiplexers of 8 inputs each, are required for the multiplexing of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 26 2023
Journal Name
International Journal Of Interactive Mobile Technologies (ijim)
Video Copyright Protection
...Show More Authors

Illegal distribution of digital data is a common danger in the film industry, especially with the rapid spread of the Internet, where it is now possible to easily distribute pirated copies of digital video on a global scale. The Watermarking system inserts invisible signs to the video content without changing the content itself. The aim of this paper is to build an invisible video watermarking system with high imperceptibility. Firstly, the watermark is confused by using the Arnold transform and then dividing into equal, non-overlapping blocks. Each block is then embedded in a specific frame using the Discrete Wavelet Transform (DWT), where the HL band is used for this purpose. Regarding the method of selecting the host frames, the

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Applied Study on Analysis of Fixed, Random and Mixed Panel Data Models Measured at specific time intervals
...Show More Authors

This research sought to present a concept of cross-sectional data models,  A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel  data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Mar 10 2012
Journal Name
الدنانير
Cryptography Using Artificial Neural Network
...Show More Authors

Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.

Preview PDF