Fresh water resources in terms of water quality is a crucial issue worldwide. In Egypt, the Nile River is the main source of fresh water in the country and monitoring its water quality is a major task on governments and research levels. In the present case study, the physical, chemical and algal distribution in Nile River was monitored over two seasons (winter and summer) in 2019. The aims of the study were to check the seasonal variation among the different water parameters and also to check the correlations between those parameters. Water samples were collected from the Nile in Cairo governorate in EGYPT. The different physiochemical and microbiological properties in water samples were assessed. The studied parameters were included: temperature, turbidity, dissolved oxygen, chemical oxygen demand, pH, electric conductivity, total dissolved solids, total hardness, anions and cations. Also, the total algae count, blue-green algae, green algae, diatoms, unicellular and filamentous algae were monitored. The results revealed that during winter season the values recorded for (turbidity, total dissolved solids, pH, total alkalinity, total hardness, dissolved oxygen, chemical oxygen demand as well as nitrate, sulfate, chloride, fluoride ions, calcium and magnesium) were higher than during summer. While other parameters including ammonia, nitrite, silicate, carbon dioxide, phosphate, manganese, iron and residual aluminium were higher in summer compared to winter. The data showed a variation total algal count of 4600 to 6500 unit/ml in winter and varied from 3100 to 4500 unit/ml during summer season with predominance of diatoms. The recorded Pearson’s correlations indicated several significant correlations between tested parameters. In conclusion, although there were several variations in tested water quality parameters though all results were within the permissible limits set by the World Health Organization for drinking water.
Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreA mixture of algae biomass (Chrysophyta, Cyanophyta, and Chlorophyte) has been investigated for its possible adsorption removal of cationic dyes (methylene blue, MB). Effect of pH (1-8), biosorbent dosage (0.2-2 g/100ml), agitated speed (100-300), particle size (1304-89μm), temperature (20-40˚C), initial dye concentration (20-300 mg/L), and sorption–desorption were investigated to assess the algal-dye sorption mechanism. Different pre-treatments, alkali, protonation, and CaCl2 have been experienced in order to enhance the adsorption capacity as well as the stability of the algal biomass. Equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models. The maximum dye-sorption capacity was 26.65 mg/g at pH= 5, 25
... Show MoreIn the current study, three types of algae namely Tetradesmus nygaardi (MZ801740), Scenedesmus quadricauda (MZ801741) and Coelastrella sp (MZ801742) were extracted by 95% ethanol and hexane against two types of gram positive and two types of gram negative bacteria by wells diffusion methods. Eleven concentrations from the extract of algae (2, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 mg/ml) were utilized. It was noticed that ethanolic extraction was more effective than hexane in Scenedesmus quadricauda than the two other mentioned algal species against all pathogenic bacteria, Acintobacter baumanii (ATCC: 19606), Klebsiella pneumonia (ATCC: 13883) Enterococcus faecalis (ATCC: 29212) and Staphylococc
... Show MoreThere are two main categories of force control schemes: hybrid position-force control and impedance control. However, the former does not take into account the dynamic interaction between the robot’s end effector and the environment. In contrast, impedance control includes regulation and stabilization of robot motion by creating a mathematical relationship between the interaction forces and the reference trajectories. It involves an energetic pair of a flow and an effort, instead of controlling a single position or a force. A mass-spring-damper impedance filter is generally used for safe interaction purposes. Tuning the parameters of the impedance filter is important and, if an unsuitable strategy is used, this can lead to unstabl
... Show More