Image is an important digital information that used in many internet of things (IoT) applications such as transport, healthcare, agriculture, military, vehicles and wildlife. etc. Also, any image has very important characteristic such as large size, strong correlation and huge redundancy, therefore, encrypting it by using single key Advanced Encryption Standard (AES) through IoT communication technologies makes it vulnerable to many threats, thus, the pixels that have the same values will be encrypted to another pixels that have same values when they use the same key. The contribution of this work is to increase the security of transferred image. This paper proposed multiple key AES algorithm (MECCAES) to improve the security of the transmitted image through IoT. This approach is evaluated via applying it on RGB bmp images and analyzing the results using standard metrics such as entropy, histogram, correlation, Peak Signal-to-Noise Ratio (PSNR) and Mean Square Error (MES) metrics. Also, the time for encryption and decryption for the proposed MECCAES is the same time consumed by original single key AES is 12 second(the used image size is 12.1MB therefore time is long). The performance experiments show that this scheme achieves confidentiality also it encourages to use effectively in a wide IoTs fields to secure transmitted image.
In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.
The goal (purpose) from using development technology that require mathematical procedure related with high Quality & sufficiency of solving complex problem called Dynamic Programming with in recursive method (forward & backward) through finding series of associated decisions for reliability function of Pareto distribution estimator by using two approach Maximum likelihood & moment .to conclude optimal policy
Image Fusion is being used to gather important data from such an input image array and to place it in a single output picture to make it much more meaningful & usable than either of the input images. Image fusion boosts the quality and application of data. The accuracy of the image that has fused depending on the application. It is widely used in smart robotics, audio camera fusion, photonics, system control and output, construction and inspection of electronic circuits, complex computer, software diagnostics, also smart line assembling robots. In this paper provides a literature review of different image fusion techniques in the spatial domain and frequency domain, such as averaging, min-max, block substitution, Intensity-Hue-Saturation(IH
... Show MoreThe mobile services are the most important media between many of telecommunication means such as the Internet and Telephone networks, And thatis be cause of its advantage represented by the high availability and independence of physical location and time,Therefore, the need to protect the mobile information appeared against the changing and the misuse especially with the rapid and wide grow of the mobile network and its wide usage through different types of information such as messages, images and videos. The proposed system uses the watermark as tool to protect images on a mobile device by registering them on a proposed watermarking server. This server allows the owner to protect his images by using invisible wat
... Show MoreFeatures are the description of the image contents which could be corner, blob or edge. Scale-Invariant Feature Transform (SIFT) extraction and description patent algorithm used widely in computer vision, it is fragmented to four main stages. This paper introduces image feature extraction using SIFT and chooses the most descriptive features among them by blurring image using Gaussian function and implementing Otsu segmentation algorithm on image, then applying Scale-Invariant Feature Transform feature extraction algorithm on segmented portions. On the other hand the SIFT feature extraction algorithm preceded by gray image normalization and binary thresholding as another preprocessing step. SIFT is a strong algorithm and gives more accura
... Show MoreHuman skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measu
... Show More