Image is an important digital information that used in many internet of things (IoT) applications such as transport, healthcare, agriculture, military, vehicles and wildlife. etc. Also, any image has very important characteristic such as large size, strong correlation and huge redundancy, therefore, encrypting it by using single key Advanced Encryption Standard (AES) through IoT communication technologies makes it vulnerable to many threats, thus, the pixels that have the same values will be encrypted to another pixels that have same values when they use the same key. The contribution of this work is to increase the security of transferred image. This paper proposed multiple key AES algorithm (MECCAES) to improve the security of the transmitted image through IoT. This approach is evaluated via applying it on RGB bmp images and analyzing the results using standard metrics such as entropy, histogram, correlation, Peak Signal-to-Noise Ratio (PSNR) and Mean Square Error (MES) metrics. Also, the time for encryption and decryption for the proposed MECCAES is the same time consumed by original single key AES is 12 second(the used image size is 12.1MB therefore time is long). The performance experiments show that this scheme achieves confidentiality also it encourages to use effectively in a wide IoTs fields to secure transmitted image.
57 isolates of Mycobacterium tuberculosis and Mycobacterium bovis were identified; they were isolated from different clinical sources which included sputum, bronchial wash, abscess, pleural fluid, gastric fluid, eye fluid, and CSF, also urine and ear swab. This investigation was carried out on 198 patient attended National Reference Laboratory for T.B during September 2009. Also the study declared that the ratio of separation of this bacterium from male was (67.6%) and it’s higher than the ratio of separation this bacterium from females which was (32.3%). The susceptibility of Mycobacterium tuberculosis to melatonin was evaluated. Many concentrati
... Show MoreReducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×105, 5.23×105, 7.85×105 and 10.46×105), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solvi
Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at dif
... Show MoreRecalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We foun
... Show MoreHeat shock protein 70 (HSP70) is a crucial protein with vital biological tasks in cell continuation of life. The variation of HSP70 activation occurs as a consequence of stress that includes temperature states, toxicity, poisoning with heavy metals, and tumor-related conditions. One of the master jobs of the HSP family is the suppression of caspase-mediated apoptosis signals. A high level of the expression of HSP70 is accountable for tumorigenesis and resistance against chemotherapeutic drugs. For this reason, the detection of HSP70 may help to diagnose cancerous diseases. From the other side, targeting this chaperone might help in treatment by maintaining late caspase-dependent events. This study was conducted to detect the presenc
... Show MoreThe response of floating stone columns of different lengths to diameter ratio (L/D = 0, 2, 4, 6, 8, and 10) ratios exposed to earthquake excitations is well modeled in this paper. Such stone column behavior is essential in the case of lateral displacement under an earthquake through the soft clay soil. ABAQUS software was used to simulate the behavior of stone columns in soft clayey soil using an axisymmetric finite element model. The behavior of stone column material has been modeled with a Drucker-Prager model. The soft soil material was modeled by the Mohr-Coulomb failure criterion assuming an elastic-perfectly plastic behavior. The floating stone columns were subjected to the El Centro earthquake, which had a magnitude of 7.1 an
... Show More