in this paper copper oxide (cuO thin films were prepared by the method of vacum thermal evaporation a pressure.
PbxCd1-xSe compound with different Pb percentage (i.e. X=0,
0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin films
were deposited by thermal evaporation on glass substrates at film
thickness (126) nm. The optical measurements indicated that
PbxCd1-xSe films have direct optical energy gap. The value of the
energy gap decreases with the increase of Pb content from 1.78 eV to
1.49 eV.
The current research illustrates experimentally the effect of series and parallel connection (Z-I Configurations) of flat plate water solar collectors array on the thermal performance of closed loop solar heating system. The study includes the effect of changing the water flow rate on the thermal efficiency. The results show that, the collector's efficiency in series connection is higher than the parallel connection within flow rate level less than (100) ℓ/hr. Moreover, the collector efficiency in parallel connection of (I-Configurations) is more than the (Z- Configurations) with increasing the water flow rate .The maximum daily efficiency for parallel (I-Configurations) and (Z- Configurations) are (55%) and (51%) at w
... Show More
... Show MoreIn the present study a new synthesis method has been introduced for the decoration of platinum(Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEMand TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfac
... Show MoreIn order to reduce the losses due to evaporation in the stored crude oil and minimizing the decrease in °API many affecting parameters were studied (i.e. Different storage system, namely batch system with different types of storage tanks under different temperatures and:or different pressures). Continuous circulation storage system was also studied. It was found that increasing pressure of the inert gas from 1 bar to 8 bar over the surface of the crude oil will decrease the percentage losses due to evaporation by (0.016%) and decrease the change of °API by (0.9) during 96 hours storage time. Similarly using covering by surfactant (potassium oleate) or using polymer (polyurethane foam) decreases the percentage evaporation losses compare
... Show MoreQuantum calculations on the most stable structure were carried
out for calculating the electronic properties, energies and the charge
density at the Carbon and Hydrogen atoms by Semi-empirical
method (PM3) of zigzag carbon nano tube CNT (9,0) (SWCNTs), at
the equilibrium geometry depending on the pictures of Zigzag
CNT(9,0) which was found to has D3d symmetry point group by
applying for (Gaussian 2003) program. In this work the results
include calculation the relation for axial bonds length, which are the
vertical C-C bonds (annular bonds) in the rings and bonds length
which are in the outer ring that called the circumferential bonds. Also
include a different kind of vibration modes like breathing, puckering
The present research had dealt with preparing bars with the length of about (13 cm) and adiametar of (1.5 cm) of composite materials with metal matrix represented by (Al-Cu-Mg) alloy cast enforced by (ZrO2) particles with chosen weight percentages (1.5, 2.5 ,3.5, 5.5 %). The base cast and the composite materials were prepared by casting method by uses vortex Technique inorder to fix up (ZrO2) particles in homogeneous way on the base cast. In addition to that, two main groups of composite materials were prepared depending on the particles size of (ZrO2) , respectively. &n
... Show MoreIn this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show More