The metric dimension and dominating set are the concept of graph theory that can be developed in terms of the concept and its application in graph operations. One of some concepts in graph theory that combine these two concepts is resolving dominating number. In this paper, the definition of resolving dominating number is presented again as the term dominant metric dimension. The aims of this paper are to find the dominant metric dimension of some special graphs and corona product graphs of the connected graphs and , for some special graphs . The dominant metric dimension of is denoted by and the dominant metric dimension of corona product graph G and H is denoted by .
The result involution graph of a finite group , denoted by is an undirected simple graph whose vertex set is the whole group and two distinct vertices are adjacent if their product is an involution element. In this paper, result involution graphs for all Mathieu groups and connectivity in the graph are studied. The diameter, radius and girth of this graph are also studied. Furthermore, several other graph properties are obtained.
Graceful labeling of a graph with q edges is assigned the labels for its vertices by some integers from the set such that no two vertices received the same label, where each edge is assigned the absolute value of the difference between the labels of its end vertices and the resulting edge labeling running from 1 to inclusive. An edge labeling of a graph G is called vertex anntimagic, if all vertex weights are pairwise distinct, where the vertex weight of a vertex under an edge labeling is the sum of the label of all edges incident with that vertex. In this paper, we address the problem of finding graceful antimagic labelin for split of the star graph , graph, graph, jellyfish graph , Dragon graph , ki
... Show MoreThe theories of metric spaces and fuzzy metric spaces are crucial topics in mathematics.
Compactness is one of the most important and fundamental properties that have been widely used in Functional Analysis. In this paper, the definition of compact fuzzy soft metric space is introduced and some of its important theorems are investigated. Also, sequentially compact fuzzy soft metric space and locally compact fuzzy soft metric space are defined and the relationships between them are studied. Moreover, the relationships between each of the previous two concepts and several other known concepts are investigated separately. Besides, the compact fuzzy soft continuous functions are studie
... Show MoreA graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense related. The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). A directed graph is a graph in which edges have orientation. A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex. For a simple undirected graph G with order n, and let denotes its complement. Let δ(G), ∆(G) denotes the minimum degree and maximum degree of G respectively. The complement degree polynomial of G is the polynomial CD[G,x]= , where C
... Show MoreF index is a connected graph, sum of the cubes of the vertex degrees. The forgotten topological index has been designed to be employed in the examination of drug molecular structures, which is extremely useful for pharmaceutical and medical experts in understanding the biological activities. Among all the topological indices, the forgotten index is based on degree connectivity on bonds. This paper characterized the forgotten index of union of graphs, join graphs, limits on trees and its complements, and accuracy is measured. Co-index values are analyzed for the various molecular structure of chemical compounds
A topological index, commonly referred to as a connectivity index, is a molecular structural descriptor that describes a chemical compound's topology. Topological indices are a major topic in graph theory. In this paper, we first define a new graph, which is a concept from the coronavirus, called a corona graph, and then we give some theoretical results for the Wiener and the hyper Wiener index of a graph, according to ( the number of pairs of vertices (u, v) of G that are at a distance . Moreover, calculate some topological indices degree-based, such as the first and second Zagreb index, , and index, and first and second Gourava index for the recent graph. In addition, we introduced a new topological index, the , w
... Show MoreThe aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
Antimagic labeling of a graph with vertices and edges is assigned the labels for its edges by some integers from the set , such that no two edges received the same label, and the weights of vertices of a graph are pairwise distinct. Where the vertex-weights of a vertex under this labeling is the sum of labels of all edges incident to this vertex, in this paper, we deal with the problem of finding vertex antimagic edge labeling for some special families of graphs called strong face graphs. We prove that vertex antimagic, edge labeling for strong face ladder graph , strong face wheel graph , strong face fan graph , strong face prism graph and finally strong face friendship graph .
A total global dominator coloring of a graph is a proper vertex coloring of with respect to which every vertex in dominates a color class, not containing and does not dominate another color class. The minimum number of colors required in such a coloring of is called the total global dominator chromatic number, denoted by . In this paper, the total global dominator chromatic number of trees and unicyclic graphs are explored.