Preferred Language
Articles
/
bsj-5022
New Versions of Liu-type Estimator in Weighted and non-weighted Mixed Regression Model
...Show More Authors

This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Some Estimator Methods of Linear Regression Model With Auto-Correlated Errors With Application Data for the Wheat in Iraq
...Show More Authors

This research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Some Aspects of Weighted Rayleigh Distribution
...Show More Authors

In this paper, we proposed a new class of weighted Rayleigh distribution based on two parameters, scale and shape parameters which are introduced in Rayleigh distribution. The main properties of this class are investigated and derived.

View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Application the generalized estimating equation Method (GEE) to estimate of conditional logistic regression model for repeated measurements
...Show More Authors

Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Class of Exponential Rayleigh Distribution and New Modified Weighted Exponential Rayleigh Distribution with Statistical Properties
...Show More Authors

This paper deals with the mathematical method for extracting the Exponential Rayleighh  distribution based on mixed between the cumulative distribution function of Exponential distribution and  the cumulative distribution function of Rayleigh distribution using an application (maximum), as well as derived different statistical properties for  distribution, and present a structure of a new distribution based on a modified weighted version of Azzalini’s (1985) named Modified Weighted Exponential Rayleigh  distribution such that this new distribution is generalization of the  distribution and provide some special models of the  distribution, as well as derived different statistical properties for  distribution

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Comparison between Modified Weighted Pareto Distribution and Many other Distributions
...Show More Authors

 

In 2020 one of the researchers in this paper, in his first research, tried to find out the Modified Weighted Pareto Distribution of Type I by using the Azzalini method for weighted distributions, which contain three parameters, two of them for scale while the third for shape.This research compared the distribution with two other distributions from the same family; the Standard Pareto Distribution of Type I and the Generalized Pareto Distribution by using the Maximum likelihood estimator which was derived by the researchers for Modified Weighted Pareto Distribution of Type I, then the Mont Carlo method was used–that is one of the simulation manners for generating random samples data in different sizes ( n= 10,30,50), and in di

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 01 2013
Journal Name
Archives Des Sciences
Convex Approximation in Terms of Fractional Weighted Moduli of Smoothness
...Show More Authors

This paper deals with founding an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to the convex polynomials by means of weighted moduli of smoothness of fractional order  , ( , ) p f t . In addition we prove some properties of weighted moduli of smoothness of fractional order.

Publication Date
Tue Sep 09 2014
Journal Name
Iosr Journal Of Mathematics (iosr-jm)
An Efficient Shrinkage Estimator for the Parameters of Simple Linear Regression Model
...Show More Authors

Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate for Survival and Related Functions of Weighted Rayleigh Distribution.
...Show More Authors

     In this paper, we introduce a new class of Weighted Rayleigh Distribution based on two parameters, one is the scale parameter and the other is the shape parameter introduced in Rayleigh distribution. The main properties of this class are derived and investigated . The moment method and least square method are used to obtain estimators of parameters of this distribution. The probability density function,   survival function, cumulative distribution and hazard function are derived and found. Real data sets are collected to investigate two methods that depend on in this study. A comparison is made between two methods of estimation and clarifies that MLE method is better than the OLS method by using the mea

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Pais estimator for the reliability function of the Pareto model of Type I failure
...Show More Authors

In this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of weighted estimated method and proposed method (BEMW) for estimation of semi-parametric model under incomplete data
...Show More Authors

Generally, statistical methods are used in various fields of science, especially in the research field, in which Statistical analysis is carried out by adopting several techniques, according to the nature of the study and its objectives. One of these techniques is building statistical models, which is done through regression models. This technique is considered one of the most important statistical methods for studying the relationship between a dependent variable, also called (the response variable) and the other variables, called covariate variables. This research describes the estimation of the partial linear regression model, as well as the estimation of the “missing at random” values (MAR). Regarding the

... Show More
View Publication Preview PDF
Crossref