Pulsed laser deposition (PLD) technique was applied to prepared Chromium oxide (Cr2O3) nanostructure doped with Titanium oxide (TiO2) thin films at different concentration ratios 3,5,7 and 9 wt % of TiO2. The effect of TiO2 dopant on the average size of crystallite of the synthesized nanostructures was examined by X-ray diffraction. The morphological properties were discussed using atomic force microscopy(AFM). Observed optical band gap value ranged from 2.68 eV to 2.55 eV by ultraviolet visible(UV-Vis.) absorption spectroscopy with longer wave length shifted in comparison with that of the bulk Cr2O3 ~3eV. This indicated that the synthesized samples are attributed to the enhancement of the quantum confinement effect. Gas response sensitivity, and recovery times of the sensor in the presence of NO2 gas were studied and discussed. In this work it is found that, the sensitivity increases when doping ratio increases from 3wt% to 5wt% of TiO2 and return to decrease over that. The optimum concentrations ratio for NO2 gas sensitivity is 5wt% of TiO2 and sensitivity is 168.75% at 200oC.
Spray pyrolysis technique was used to make Carbon60-Zinc oxide (C60-ZnO) thin films, and chemical, structural, antibacterial, and optical characterizations regarding such nanocomposite have been done prior to and following treatment. Fullerene peaks in C60-ZnO thin films are identical and appear at the same angles. Following the treatment of the plasma, the existence regarding fullerene peaks in the thin films investigated suggests that the crystallographic quality related to C60-ZnO thin films has enhanced. Following plasma treatment, field emission scanning electron microscopy (FESEM) images regarding a C60-ZnO thin film indicate that both zinc oxide and fullerene particles had shrunk in the size and have an even distribution. In addition
... Show MoreMixed phase rutile/anatase of TiO2 was prepared and studied by a closed field DC magnetron sputtering configuration (CFDCMS). It was found that the contents of rutile increased from the ratio of 38% to 53% as the deposition time increased from 3.5 hours to 4.5 hours.
The photocatalytic activity of the mixed phase rutile/anatase TiO2 was measured by monitoring the degradation of the blue methylene dye in an aqueous solution, under exposure to UV-radiation, using UV-vis absorption spectroscopy. It was proven that the photocatalytic activity in the mixed phase (TiO2) is a function of rutile content reaching a maximum value at 53% rutile. Thus, the effect of synergy between anatase- TiO2 and rutile- TiO2 was observed. It was observed that
Nanocomposites of polymer material based on CdS as filler
material and poly methyl methacrylate (PMMA) as host matrix have
been fabricated by chemical spray pyrolysis method on glass
substrate. CdS particles synthesized by co-precipitation route using
cadimium chloride and thioacetamide as starting materials and
ammonium hydroxide as precipitating agent. The structure is
examined by X-ray diffraction (XRD), the resultant film has
amorphous structure. The optical energy gap is found to be (4.5,
4.06) eV before and after CdS addition, respectively. Electrical
activation energy for CdS/PMMA has two regions with values of
0.079 and 0.433 eV.
Effect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
In this paper, ferric oxide nanoparticles) Fe2O3 NPs( were synthesized directly on a quartz substrate in vacuum by pulse laser deposition technique using Nd:YAG laser at different energies (171, 201,363 mJ/pulse). The slides were then heated to 700o C for 1 hour. The structural, optical, morphological, and electrical properties were studied. The optical properties indicated that the prepared thin films have an energy gap ranging from 2.28 to 2.04 eV. The XRD results showed no lattice impurities for other iron oxide phases, confirming that all particles were transformed into the α-Fe2O3 phase during the heating process. The AFM results indicated the dependence of nanoparticles size o
... Show MoreNanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C,
... Show MorePVA:PEG/MnCl2 composites have been prepared by adding (MnCl2) to the mixture of the poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) with different weight percentages (0, 2, 4, 6, 8 and 10) wt.% by using casting method. The type of charge carriers, concentration (nH) and Hall mobility (μH) have been estimated from Hall measurements and show that the films of all concentration have a negative Hall coefficient. In D.C measurement increase temperature leads to decrease the electrical resistance. The D.C conductivity of the composites increases with the increasing of the concentration of additive particles and temperature. The activation energy decreases for all composites with increasing the concentration of the additive particles.
... Show MoreDesign and Construction system for recording Finger print by laser, and separted the signal to noise by holographic element, was done. For safety, total reflection lighting ensures hat aser earns an not enter An operators eyes. Holographic diffraction grating was used instead of computer program to contrast images.
Indium antimony (InSb) alloy were prepared successfully. The InSb films were prepared by flash thermal evaporation technique on glass and Si p-type substrate at various substrate temperatures (Ts= 423,448,473, and 498 K). The compounds concentrations for prepared alloy were examined by using Atomic Absorption Spectroscopy (AAS) and X-ray fluorescence (XRF). The structure of prepared InSb alloy and films deposited at various Ts were examined by X-ray diffraction (XRD).It was found that all prepared InSb alloy and films were polycrystalline with (111) preferential direction . The electrical properties of the films are studied with the varying Ts. It is found that
... Show More