Nanoparticles of Pb1-xCdxS within the composition of 0≤x≤1 were prepared from the reaction of aqueous solution of cadmium acetate, lead acetate, thiourea, and NaOH by chemical co-precipitation. The prepared samples were characterized by UV-Vis spectroscopy(in the range 300-1100nm) to study the optical properties, AFM and SEM to check the surface morphology(Roughness average and shape) and the particle size. XRD technique was used to determine the crystalline structure, XRD technique was used to determine the purity of the phase and the crystalline structure, The crystalline size average of the nanoparticles have been found to be 20.7, 15.48, 11.9, 11.8, and 13.65 nm for PbS, Pb0.75Cd0.25S, Pb0.5Cd0.5S, Pb0.25Cd0.75S, and CdS respectively. The results indicate that crystalline structure of all prepared samples is cubic except CdS which shows hexagonal and cubic structure. The particle size was found within the range of (64.81 to 91.14) nm, with a high purity.
Thin films of iridium doped indium oxide (In2O3:Eu)with different doping ratio(0,3,5,7,and 9%) are prepared on glass and single crystal silicon wafer substrates using spray pyrolysis method. The goal of this research is to investigate the effect of doping ratio on of the structural, optical and sensing properties . The structure of the prepared thin films was characterized at room temperature using X-ray diffraction. The results showed that all the undoped and doped (In2O3:Eu)samples are polycrystalline in structure and nearly stoichiometric. UV-visible spectrophotometer in the wavelength range (200-1100nm)was used to determine the optical energy gap and optical constants. The optical transmittance of 83% and the optical band gap of 5.2eV
... Show MoreInterest has largely centered on the use of plant fibers to reinforce plastics, because these fibers are abundant and cheap. Carrot fibers (Curran) have been extracted from carrot, left over from carrot juice manufacture. The fibers of two sizes fine (50<µm) and coarse (100-150 µm) have been mixed with epoxy in four levels of loading (10, 20, 30, 40 wt %) respectively. Impact test, shore d hardness test and three point bending test of epoxy and carrot fiber-epoxy composites samples have been determined. The impact strength values of samples prepared with fine and coarse fibers increased as compared with pure epoxy sample. Hardness values increased, and the Young’s modulus values decreased with fiber content of both sizes.
The Khabour reservoir, Ordovician, Lower Paleozoic, Akkas gas field which is considered one of the main sandstone reservoirs in the west of Iraq. Researchers face difficulties in recognizing sandstone reservoirs since they are virtually always tight and heterogeneous. This paper is associated with the geological modeling of a gas-bearing reservoir that containing condensate appears while production when bottom hole pressure declines below the dew point. By defining the lithology and evaluating the petrophysical parameters of this complicated reservoir, a geological model for the reservoir is being built by using CMG BUILDER software (GEM tool) to create a static model. The petrophysical properties of a reservoir were computed using
... Show MoreWe report here an innovative feature of green nanotechnology-focused work showing that mangiferin—a glucose functionalized xanthonoid, found in abundance in mango peels—serves dual roles of chemical reduction and in situ encapsulation, to produce gold nanoparticles with optimum in vivo stability and tumor specific characteristics. The interaction of mangiferin with a Au-198 gold precursor affords MGF-198AuNPs as the beta emissions of Au-198 provide unique advantages for tumor therapy while gamma rays are used for the quantitative estimation of gold within the tumors and various organs. The laminin receptor specificity of mangiferin affords specific accumulation of therapeutic payloads of this new therapeutic agent within prostate tumors
... Show MoreBackground: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirement. The purpose of this study was to evaluate the effect of addition of 3% wt of treated (silanized) Titanium oxide Nano filler on some physical and mechanical properties of heat cured acrylic denture base material. Materials and methods: 100 specimens were constructed, 50 specimens were prepared from heat cure PMMA without additives (control) and 50 specimens were prepared from heat cure PMMA with the addition of TiO2 Nano fillers. Each group was divided into 5 sub groups according to the test performed which was mixed by probe ultra-sonication machine. Results: A highly
... Show MoreBackground: Imprelon® Biostar foils are new alternative tray material that has become increasingly popular because oftheir several advantages. Also, (Duran®) is another type of Biostar foils which is used in splint therapy. This study assessed some mechanical properties of these two types Biostar sheets in comparison with some types of acrylic resins used for construction of trays and splints. Materials and Methods: A total of 150 specimens were prepared, 30 specimens for each test, 10 for each group material in order to assess some mechanical properties of the Imprelon® Biostar foil (dimension stability, surface roughness and shear bond strength of Imprelon® materialto zinc oxide impression material) and compare them to that of the oth
... Show MoreThe possibility of implementing smart mobility in the traditional city: Studying the possibility of establishing an intelligent transportation system in the city center of Kadhimiya
In this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.