Nanoparticles of Pb1-xCdxS within the composition of 0≤x≤1 were prepared from the reaction of aqueous solution of cadmium acetate, lead acetate, thiourea, and NaOH by chemical co-precipitation. The prepared samples were characterized by UV-Vis spectroscopy(in the range 300-1100nm) to study the optical properties, AFM and SEM to check the surface morphology(Roughness average and shape) and the particle size. XRD technique was used to determine the crystalline structure, XRD technique was used to determine the purity of the phase and the crystalline structure, The crystalline size average of the nanoparticles have been found to be 20.7, 15.48, 11.9, 11.8, and 13.65 nm for PbS, Pb0.75Cd0.25S, Pb0.5Cd0.5S, Pb0.25Cd0.75S, and CdS respectively. The results indicate that crystalline structure of all prepared samples is cubic except CdS which shows hexagonal and cubic structure. The particle size was found within the range of (64.81 to 91.14) nm, with a high purity.
In this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the (CH3)3COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the
This paper aims to study the effects of the long term solar activity on the critical frequencies of ionospheric F1 layer over Baghdad city, during the solar cycle 22, within (1988- 1995). It is found that the critical frequency of this layer is closely related to the sunspots number during the years of the solar cycle 22, at a middle latitude region of the world. The study discussed the effect of sunspot numbers and solar events on the electron densities of F1 layer, which is the most important ionospheric parameter.
In this work, a deep computational study has been conducted to assign several qualities for the graph . Furthermore, determine the amount of the dihedral subgroups in the Held simple group He through utilizing the attributes of gamma.
The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreThe performance analyses of 15 kWp (kW peak) Grid -Tied solar PV system (that considered first of its type) implemented at the Training and Energy Research Center Subsidiary of Iraqi Ministry of Electricity in Baghdad city has been achieved. The system consists of 72 modules arranged in 6 strings were each string contains 12 modules connected in series to increase the voltage output while these strings connected in parallel to increase the current output. According to the observed duration, the reference daily yields, array daily yields and final daily yields of this system were (5.9, 4.56, 4.4) kWh/kWp/day respectively. The energy yield was 1585 kWh/kWp/year while the annual total solar irradiation received by solar array system was 198
... Show MoreIn this paper a comparison of the experimental of evacuated tube solar water heater systems with and without mirror flat reflector. The aim of using the reflector to improve thermal efficiency, and the data gathered which are (temperature, solar irradiation and time) for three days were compared. the results from compared data the temperature lower increase in evacuated tube solar water heater system without reflector than the temperature increase in evacuated tube solar water heater system with reflector .The results show (53, 39, 35) % for three days respectively that the evacuated tube solar water heater system with reflector has higher thermal efficiencies than the results (47, 28, 30) % for three days respectively thermal efficiencies
... Show More