A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.
The problems of modeling the signal and dispersion properties of a second order recursive section in the integer parameter space are considered. The formulation and solution of the section synthesis problem by selective and dispersive criteria using the methods of integer nonlinear mathematical programming are given. The availability of obtaining both positive and negative frequency dispersion of a signal in a recursive section, as well as the possibility of minimizing dispersion distortions in the system, is shown.
Assume that G is a finite group and X is a subset of G. The commuting graph is denoted by С(G,X) and has a set of vertices X with two distinct vertices x, y Î X, being connected together on the condition of xy = yx. In this paper, we investigate the structure of Ϲ(G,X) when G is a particular type of Leech lattice groups, namely Higman–Sims group HS and Janko group J2, along with X as a G-conjugacy class of elements of order 3. We will pay particular attention to analyze the discs’ structure and determinate the diameters, girths, and clique number for these graphs.
In this paper, the oscillatory and nonoscillatory qualities for every solution of fourth-order neutral delay equation are discussed. Some conditions are established to ensure that all solutions are either oscillatory or approach to zero as . Two examples are provided to demonstrate the obtained findings.
In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.
Orthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for va
... Show More
ABSTRACT
The researcher seeks to shed light on the relationship analysis and the impact between organizational values in all its dimensions (Administration Management, Mission, relationship management, environmental management) and strategic performance (financial perspective, customer perspective, the perspective of internal processes, learning and development) in the presidency of Two Universities of Baghdad & Al-Nahrain, it has been formulating three hypotheses for this purpose.
The main research problem has been the following question: Is there a relationship and the impact of bet
... Show MoreWe examine the integrability in terms of Painlevè analysis for several models of higher order nonlinear solitary wave equations which were recently derived by Christou. Our results point out that these equations do not possess Painlevè property and fail the Painlevè test for some special values of the coefficients; and that indicates a non-integrability criteria of the equations by means of the Painlevè integrability.