This paper investigates the effect of magnetohydrodynamic (MHD) of an incompressible generalized burgers’ fluid including a gradient constant pressure and an exponentially accelerate plate where no slip hypothesis between the burgers’ fluid and an exponential plate is no longer valid. The constitutive relationship can establish of the fluid model process by fractional calculus, by using Laplace and Finite Fourier sine transforms. We obtain a solution for shear stress and velocity distribution. Furthermore, 3D figures are drawn to exhibit the effect of magneto hydrodynamic and different parameters for the velocity distribution.
In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.
In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
Infertility is one of the types of diseases that occur in the reproductive system. Obesity is a state that can be occurred due to excessive fats, the progression in obesity stage results in a change in adipose tissue and the development of chronic inflammation, endocrine glands disorders and women’s reproductive system, and also increase the infection with covid-19. The study aimed to investigate the effect of the obesity, lipid-profile, and IL-6 on hormones-dysregulation in infertile-women with COVID-19 complications. The current study included 70 samples: 50 infertility-women-with-covid-19-infected, 20 healthy-women/control, the ages of both patients and healthy subjects were selected within the range 18-34 years. Levels of FBS, LH,
... Show MoreStick- slip is the continuous stopping& release of the Bit/BHA due to the irregular down-hole rotation prompted by the existing relationship between the friction torque and the torque applied from the surface to free the bit.
Friction coefficient between BHA and wellbore is the main player of stick slip amount, which can be mitigated by support a good lubricators as additives in drilling mud.
Mathematical (or empirical) solves should be done through adjusting all parameters which supposed to reduce stick- slip as low as possible using different models, one of the main parameters is drilling mud. As per Nanoparticles drilling fluid is a new technology that offers high performance
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va
... Show MoreIn this article the peristaltic transport of viscoelastic fluid through irregular microchannel under the effect of Hall current, varying viscosity and porous medium is investigated. The mathematical expressions for the basic flow equations of motion are formulated and transformed into a system of ordinary differential equations by utilizing appropriate non dimensional quantities. The exact solution for the temperature distribution is obtained, while perturbation series solution for the stream function in terms of tiny viscosity parameter is used. Graphical illustrations are presented to capture the physical impact of embedded parameters in the fluid flow i.e. the fluid velocity field, temperature distribution, pressure rise, and
... Show MoreIn this research, we studied the impact of Magnetohydrodynamic (MHD) on Jeffrey fluid with porous channel saturated with temperature-dependent viscosity (TDV). It is obtained on the movement of fluid flow equations by using the method of perturbation technique in terms of number Weissenberg ( ) to get clear formulas for the field of velocity. All the solutions of physical parameters of the Reynolds number , Magnetic parameter , Darcy parameter , Peclet number and are discussed under the different values, as shown in the plots.
In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreThis paper deals with a mathematical model of a fluid flowing between two parallel plates in a porous medium under the influence of electromagnetic forces (EMF). The continuity, momentum, and energy equations were utilized to describe the flow. These equations were stated in their nondimensional forms and then processed numerically using the method of lines. Dimensionless velocity and temperature profiles were also investigated due to the impacts of assumed parameters in the relevant problem. Moreover, we investigated the effects of Reynolds number , Hartmann number M, magnetic Reynolds number , Prandtl number , Brinkman number , and Bouger number , beside those of new physical quantities (N , ). We solved this system b
... Show MoreThis research studying the phenomenon of Doppler (frequency Doppler) as a method through which the direction and speed of the blood cells flows in blood vessels wear measured. This Doppler frequency is relied upon in medicine for measuring the speed of blood flow, because the blood flow is an important concept from the concepts of medicine. It represents the function and efficient of the heart and blood vessels in the body so any defect in this function will appear as a change in the speed of blood flow from the normal value assumed. As this speed changes alot in cases of disease and morbidity of the heart, so in order to identify the effect of changing the Doppler frequency on the speed of blood flow and the relationship of
... Show More