The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Bending effects on the transmission of optical signal are investigated on a single mode
optical fiber (SMOF) of 10 m length, core radius of 5 μm and optical refractive index difference
0.003. The bending radii (R) were between 0.08 and 0.0015 m. A great decrease in the amplitude is
shown for radii below 0.01 m. Sudden break down occurs for radii less than 0.0015 m. Birefringence
(B) is difficult to measure for long fibers. Meanwhile, B was found by comparing with calibrated
fiber of the same properties but of length of 0.075 m. The results show an increase in propagation
constant (Δβ) and the decrease in beat length (Lb), and show that bending decreases the critical radius
of curvature (Rc) related to B. The chang
Background: Anemia is a serious global public health problem that particularly affects pregnant women.
Objectives: The objectives of the study were to find out the prevalence of anemia and its associated risk factors among supplemented and non-supplemented pregnant women.
Cases and methods: Six hundred and forty-one blood samples were collected through simple random sampling from pregnant women and controls. The collected data from the participants included age, education, residence, and obstetrical related factors, and blood samples were taken for blood tests.
Results: One hundred and sixty-four (74.2%) and 73 (34.9%) of non-supplemented and supp
... Show MoreIn this note we consider a generalization of the notion of extending modules namely supplement extending modules. And study the relation between extending and supplement extending modules. And some properties of supplement extending. And we proved the direct summand of supplement extending module is supplement extending, and the converse is true when the module is distributive. Also we study when the direct sum of supplement extending modules is supplement extending.
In this paper we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of (denoted by ) Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.
In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with is hollow, there exists a submodule K of M such that M = K Ḱ and K N in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are given .
Let R be any ring with identity, and let M be a unitary left R-module. A submodule K of M is called generalized coessential submodule of N in M, if Rad( ). A module M is called generalized hollow-lifting module, if every submodule N of M with is a hollow module, has a generalized coessential submodule of N in M that is a direct summand of M. In this paper, we study some properties of this type of modules.
In this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.