In this work, the switching nonlinear dynamics of a Fabry-Perot etalon are studied. The method used to complete the solution of the differential equations for the nonlinear medium. The Debye relaxation equations solved numerically to predict the behavior of the cavity for modulated input power. The response of the cavity filled with materials of different response time is depicted. For a material with a response time equal to = 50 ns, the cavity switches after about (100 ns). Notice that there is always a finite time delay before the cavity switches. The switch up time is much longer than the cavity build-up time of the corresponding linear cavity which was found to be of the order of a few round-trip times. The slowing down of the cavity response occurs when the incident intensity is approximately equal to the critical switching intensity. This effect is called critical slowing down. As a result, the response of the cavity is much slower than what could be expected from the steady state analysis. The reflected intensity and the change in round-trip phase have similar dynamic response. In this research, the matlap programs are used to study the switching dynamics of a Fabry-Perot etalon.
Respiratory syncytial virus (RSV) is an important cause of respiratory infection among children and infants globally. The first line of the immune response against this virus is neutrophils, macrophages, and innate lymphoid cells. Antigen‑presenting cells such as dendritic cells which present the viral antigen to T lymphocytes that mediate viral clearance by T cytotoxic cells and initiate systemic lymphopenia. Humoral immunity will also be stimulated through B‑cell‑stimulating factors derived from epithelial cells of the respiratory tract that play an important factor in antibody production and induction memory to reinfection through IgG and IgA protective antibodies that are useful in vaccine production.
The mechanism of hydrogen (H2) gas sensor in the range of 50-200 ppm of RF-sputtered annealed zinc oxide (ZnO) and without annealing was studied. The X-ray Diffraction( XRD) results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The I–V characteristics of the device (PT/ZnO/Pt) measured at room temperature before and after annealing at 450 oC for4h, from which a linear relationship has been observed. The sensors had a maximum response to H2 at 350 oC for annealing ZnO and showed stable behavior for detecting H2 gases in the range of 50 to 200 ppm. The annealed film exhibited hig |
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show MoreThe aim for this research is to investigate the effect of inclusion of crack incidence into the 2D numerical model of the masonry units and bonding mortar on the behavior of unreinforced masonry walls supporting a loaded reinforced concrete slab. The finite element method was implemented for the modeling and analysis of unreinforced masonry walls. In this paper, ABAQUS, FE software with implicit solver was used to model and analyze unreinforced masonry walls which are subjected to a vertical load. Detailed Micro Modeling technique was used to model the masonry units, mortar and unit-mortar interface separately. It was found that considering potential pure tensional cracks located vertically in the middle of the mortar and units show
... Show MoreThe aim of the present study was to develop theophylline (TP) inhalable sustained delivery system by preparing solid lipid microparticles using glyceryl behenate (GB) and poloxamer 188 (PX) as a lipid carrier and a surfactant respectively. The method involves loading TP nanoparticles into the lipid using high shear homogenization – ultrasonication technique followed by lyophilization. The compositional variations and interactions were evaluated using response surface methodology, a Box – Behnken design of experiment (DOE). The DOE constructed using TP (X1), GB (X2) and PX (X3) levels as independent factors. Responses measured were the entrapment efficiency (% EE) (Y1), mass median
... Show MoreIn engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode
... Show MorePots experiment was conducted in the green house of Biology Department, College of Education ( Ibn-AL-Haithum), University of Baghdad , during the growing season of 2005-2006 , to study the effect of five levels of urea fertilizer (0,50,100,150and 200) mg/pot in on vegetative growth of one wheat cultivar (Adanania) upon randomized complete block design with four replications. The results showed that significant difference between urea fertilizer levels above in vegetative growth characteristics ( plant height , leaf area , chlorophyll content, dry matter weight , relative efficiency and relative yield ) It was also showed that 200 mg/pot level was superior to urea fertilizer levels others in above charac
... Show MoreTo explore the potential for in vitro rapid regeneration of Spanish dagger (Yucca gloriosa 'Variegata'), different concentrations of 6-Benzyladenine (BA), 1-naphthaleneacetic acid (NAA) and combinations of both were evaluated for callus induction initiated on leaf and bud (terminal and axillary buds) explants using Murashige and Skoog (MS) medium. Callus response induction percentage, fresh weight, color and texture of the callus were assessed after 1.5 and 6.0 months in culture. The appropriate medium for callus initiation on leaf explants was MS medium supplemented with 6.0 mg/L NAA. A combination of 0.2 mg/L BA and 1.5 mg/L NAA also exhibited a remarkable callus induction on bud explants. Effect of thidiazuron (TDZ) addition to the cultu
... Show More