Aqueous extract of poppy plant) Papaver nudicaule) with five concentrations (50, 100, 150, 200 and 250) mg/l were used to anesthetize fingerlings of the common carp Cyprinus carpio (Mean total length 8.91 ± 0.31 cm and mean total weight 7.72 ± 1.19 gm) instead of the traditional use of MS-222. Results showed that extracted solution of poppy have partial and overall anesthesia effect on these fishes with inverse relationship between the concentrations used and the time needed to reach partial and overall anesthesia, and also direct relationship between concentrations used and time needed for fish recovery. Best results were obtained by using a concentration of 250 mg/l, where time for partial anesthesia was 8 ± 1.52 min., time for overall anesthesia was 10 ± 1.70 min., time needed for partial recovery was 25 ± 2.43 min. and time needed for overall recovery was 35 ± 2.23 min. Fish behavior observations revealed a difference ranging from slow swimming with increasing in breathing rates movements to vertical swimming near the surface, then laying at bottom and too much decrease in breathing rates movements. Results appeared that there were no significant differences (p≥0.01) between glucose concentration in fish blood plasma after recovery and control fishes. So it was concluded that these. The results showed also that there were no significant differences (p≥0.01) in ALP, AST, ALT, LDH and CK among fishes after recovery comparing with the control fishes. Experimental fishes exhibited no stress during anesthesia by using poppy extracted solution. This indicated that the treated fishes exhibited no physiological effects stress which might lead to poor health condition later. The study demonstrated that poppy can be used as an effective anesthetic, as we obtained acceptable induction and recovery times. The poppy can be recommended as suitable anesthetics for fishes (200 or 250 mg/l).
This study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5NPs were determined using the (EDX) pattern, Atomic force microscopy AFM. The a
... Show MoreThe largest use of x-ray in medical by dentists, employers or persons that needed by patients with specific conditions, lead to higher exposure of x-ray that may cause many diseases. In the present work radiography films have been used in evaluating the efficiency of using unsaturated polyester polymer reinforced with lead oxide (PbO) as shield material for medical x-ray devices, many parameters studied like concentration and thickness that they are increasing the attenuation of x-ray in them. The results show that the attenuation of X-ray increasing with concentration of reinforced material and with thickness, and the optical density decreases with increasing concentration from 0% to 50%, we chose 30% as suitable concentration to increase
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show More