In this work, two different structures are proposed which is fuzzy real normed space (FRNS) and fuzzy real Pre-Hilbert space (FRPHS). The basic concept of fuzzy norm on a real linear space is first presented to construct space, which is a FRNS with some modification of the definition introduced by G. Rano and T. Bag. The structure of fuzzy real Pre-Hilbert space (FRPHS) is then presented which is based on the structure of FRNS. Then, some of the properties and related concepts for the suggested space FRN such as -neighborhood, closure of the set named , the necessary condition for separable, fuzzy linear manifold (FLM) are discussed. The definition for a fuzzy seminorm on is also introduced with the prove that a fuzzy seminorm on is FRNS. The relationship between the -convergent sequence, -Cauchy sequence and -completeness is then investigated in this work. The structure of FRPHS with some important properties concerning on this space are introduced and proved. In addition, the property of orthogonality with some important properties for these spaces is included, for example the annihilator of the set . The relation between FRPHS and FRNS is investigated in the present work. Finally, after introducing the structure of FRPHS, it leads naturally to the definition of the most important class of FRPHS, namely the fuzzy real Hilbert space (FRHS).
In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
in this article, we present a definition of k-generalized map independent of non-expansive map and give infinite families of non-expansive and k-generalized maps new iterative algorithms. Such algorithms are also studied in the Hilbert spaces as the potential to exist for asymptotic common fixed point.
The primary purpose of this paper is to introduce the, 2- coprobabilistic normed space, coprobabilistic dual space of 2- coprobabilistic normed space and give some facts that are related of them
The artistic concepts differ in their expressive and semantic relations, among these concepts are the artistic values, as there are points of view, social concepts and historical values interacted from one generation to another over the time. These values represent symbols and indications reflect reality, which has passed through the time to reach us with environmental forms saved by the history at the Natural History Museum, has an impact on the receives mind with its formal and sensory dimensions and connecting with that history as an environment that lacks to the current reality which has immortal means particularly in the cognitive thinking , and the reflection of that in the Iraqi culture and with the associated concepts of interior
... Show MoreIn this paper the chain length of a space of fuzzy orderings is defined, and various properties of this invariant are proved. The structure theorem for spaces of finite chain length is proved. Spaces of Fuzzy Orderings Throughout X = (X,A) denoted a space of fuzzy orderings. That is, A is a fuzzy subgroup of abelian group G of exponent 2. (see [1] (i.e. x 2 = 1,  x  G), and X is a (non empty) fuzzy subset of the character group ï£ (A) = Hom(A,{1,–1}) satisfying: 1. X is a fuzzy closed subset of ï£ (A). 2.  an element e  A such that ï³(e) = – 1  ï³ ïƒŽ X. 3. Xïž :={a  A\ ï³(a) = 1  ï³ ïƒŽ X} = 1. 4. If f and g are forms over A and if x  D(
... Show MoreIn this paper, we will give another class of normal operator which is (K-N)*
quasi-n-normal operator in Hilbert space, and give some properties of this concept
as well as discussion the relation between this class with another class of normal
operators.
The primary purpose of this paper is to introduce the, N-coprobabilistic normed space, coprobabilistic dual space of N-coprobabilistic normed space and give some facts that are related of them.
Abstract:
One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.
The paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.
Arab-Islamic architecture has undergone a change at multiple levels affected by modern technology, so the research sought to address the role of contemporary technologies on a fundamental and fundamental component of architecture, which is the architectural space, what is known as the essence of architecture and its ultimate destination, with a focus on the architectural space in the architecture of the contemporary Arab Islamic mosque, because the mosque’s architecture is so important in Islamic law and the belief of the Muslim person himself, where the mosque is the functional style produced by the Islamic faith and embodied in it, whereas, knowing the levels of influence of contemporary technologies in the architectural spac
... Show More