Microalgae have been used widely in bioremediation processes to degrade or adsorb toxic dyes. Here, we evaluated the decolorization efficiency of Chlorella vulgaris and Nostoc paludosum against two toxic dyes, crystal violet (CV) and malachite green (MG). Furthermore, the effect of CV and MG dyes on the metabolic profiling of the studied algae has been investigated. The data showed that C. vulgaris was most efficient in decolorization of CV and MG: the highest percentage of decolorization was 93.55% in case of MG, while CV decolorization percentage was 62.98%. N. paludosum decolorized MG dye by 77.6%, and the decolorization percentage of CV was 35.1%. Metabolic profiling of C. vulgaris and N. paludosum were performed using NMR spectroscopy. Based on 1D and 2D NMR data, 43 compounds were identified in the polar extract of C. vulgaris, while 34 polar metabolites were successfully determined in N. paludosum. The identified compounds included carbohydrates, amino acids, organic acids, dipeptides, steroids and phenols. Statistical analysis was carried out to recognize the pattern of metabolite variation between control and dye treated samples. Principal component analysis (PCA) and hierarchical cluster analysis showed that samples treated with MG are clearly separated from the control in both types of algae. Based on heat map data, the level of carbohydrates and amino acids concentrations are strongly affected by bioremediation of MG dye compared with CV dye. In conclusion, the present study proved that CV and MG dyes are considered as stress factors and the studied algae species exert their bioremediation activity without the dyes being absorbed into the cells.
The increased size of grayscale images or upscale plays a central role in various fields such as medicine, satellite imagery, and photography. This paper presents a technique for improving upscaling gray images using a new mixing wavelet generation by tensor product. The proposed technique employs a multi-resolution analysis provided by a new mixing wavelet transform algorithm to decompose the input image into different frequency components. After processing, the low-resolution input image is effectively transformed into a higher-resolution representation by adding a zeroes matrix. Discrete wavelets transform (Daubechies wavelet Haar) as a 2D matrix is used but is mixed using tensor product with another wavelet matrix’s size. MATLAB R2021
... Show MoreVoting is one of the most fundamental components of a democratic society. In 2021 Iraq held the Council of Representatives (CoR) elections in 83 electoral constituencies in 19 governorates. Nonetheless, several significant issues arose during this election, including the problem of logistics distribution, the excessively long period of ballot counting, voters can't know if their votes were counted or if their ballots were tampered with, and the inconsistent regulation of vote counting. Blockchain technology, which was just invented, may offer a solution to these problems. This paper introduces an electronic voting system for the Iraq Council of Representatives elections that is based on a prototype of the permission hyperledger fabr
... Show MoreAn environmental study conducted on diatoms in Al Yusifiya river beyond its branching from Euphrates river. Four sites were selected along the river for the period from march 2013 to September 2013. The present study involved the measurement of physicochemical parameters, also the qualitative and quantities of diatoms. The studied parameters values ranged as follows: 19-44Cº and 16-30 Cº for air and water temperature respectively, 6.9-8.7, 595-1248 µS/cm, 6.4-8.0 mg/l for pH, electric conductivity and dissolved oxygen respectively. A total of 74 taxa were recorded for diatoms, where the pinnate diatom was the predominant and recorded 64 taxa while 10 taxa for centric diatoms. The total number of diatoms was 1197.55*104 cell /l. The tota
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
The effect of using three different interpolation methods (nearest neighbour, linear and non-linear) on a 3D sinogram to restore the missing data due to using angular difference greater than 1° (considered as optimum 3D sinogram) is presented. Two reconstruction methods are adopted in this study, the back-projection method and Fourier slice theorem method, from the results the second reconstruction proven to be a promising reconstruction with the linear interpolation method when the angular difference is less than 20°.