Researchers used different methods such as image processing and machine learning techniques in addition to medical instruments such as Placido disc, Keratoscopy, Pentacam;to help diagnosing variety of diseases that affect the eye. Our paper aims to detect one of these diseases that affect the cornea, which is Keratoconus. This is done by using image processing techniques and pattern classification methods. Pentacam is the device that is used to detect the cornea’s health; it provides four maps that can distinguish the changes on the surface of the cornea which can be used for Keratoconus detection. In this study, sixteen features were extracted from the four refractive maps along with five readings from the Pentacam software. The classifiers utilized in our study are Support Vector Machine (SVM) and Decision Trees classification accuracy was achieved 90% and 87.5%, respectively of detecting Keratoconus corneas. The features were extracted by using the Matlab (R2011 and R 2017) and Orange canvas (Pythonw).
Vocational stresses and their relation with the level of ambition among the lecturers of the university In general , vocational stresses affect the attention and the process of focusing making individual busy with solving of his daily problems instead of his job. The vocational stresses , anxiety and tension are factors effecting the physical and psychological ability of the individual. This study aims to measure the vocational stresses among the lecturers of the university , to measure the level of ambition among them, to identify the statistical differences significant among them according to sex variable, to identify the differences significant in level of ambition among them according to sex variable and to identify the correlation r
... Show MoreCholinesterases are among the most efficient enzymes known. They are divided into two groups: acetylcholinesterase (AChE) involved in the hydrolysis of the neurotransimitter acetylcholine, and butyrylcholinesterase (BChE) of unknown function. Several crystal structures of the former have shown that the active site is located at the bottom of a deep and narrow gorge. Human BChE has attracted attention because it can hydrolyze toxic esters and nerve agents. Here we analyze the complexes of cholinesterase with soman by describing the 3D geometry of the complex, the active site, the changes happened through the inhibition and provide a description for the mechanism of inhibition. Soman undergoes degradation in the active site of the AChE and B
... Show MoreThis study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d o
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
Scheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy the
... Show MoreIn this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this
... Show MoreBreast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreMalaysia's growing population and industrialisation have increased solid waste accumulation in landfills, leading to a rise in leachate production. Leachate, a highly contaminated liquid from landfills, poses environmental risks and affects water quality. Conventional leachate treatments are costly and time-consuming due to the need for additional chemicals. Therefore, the Electrocoagulation process could be used as an alternative method. Electrocoagulation is an electrochemical method of treating water by eliminating impurities by applying an electric current. In the present study, the optimisation of contaminant removal was investigated using Response Surface Methodology. Three parameters were considered for optimisation: the curr
... Show More