Cutaneous leishmaniasis is one of endemic diseases in Iraq. It is considered as widely health problem and is an uncontrolled disease. The aim of the study is to identify of Leishmania species that cause skin lesions among patients in Thi-Qar Province, South of Iraq, also to detect some virulence factors of L. tropica. This study includes three local locations, Al-Hussein Teaching, Suq Al-Shyokh General and Al-Shatrah General Hospitals in Province for the period from the beginning of December 2018 to the end of September 2019. The samples were collected from 80 patients suffering from cutaneous leishmaniasis, both genders, different ages, various residence places and single and multiple lesions. Nested-PCR technique was used to amplify kinetoplast minicircle fragments DNA (kDNA). Conventional-PCR was performed for determination of some virulence factors (LPG1, GP63, CPA and PPG1 genes). The electrophoresis findings of kDNA gene showed two species of the parasite found in the study area, 65 samples were positive for cutaneous leishmaniasis, L. tropica at 750bp and L. major at 560bp. Generally, L. tropica (57.5%) was the most common specie and L. major (23.75%) appeared in a low level. There are no significant differences between the infections of males and females, while there are significant differences at the comparison between age groups. All virulence genes (LPG1, GP63, CPA and PPG1) appeared in all L. tropica isolates with high percentage (100%). L. tropica is the major specie which that caused CL in Thi-Qar province, while L. major appeared in low incidence. The virulence genes, which were reviewed, are necessary and important in pathogenesis of L. tropica.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami
... Show MoreMammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThis research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreThe specimens of Camponotusxerxes Forel, 1904 were collected from different localities in Iraq; the purpose of morphological study of this species in details throughout the present study.
The description was based on major workers belonging to this species, also some notes of polymorphism in workers have been mentioned; the most important of morphological features are illustrated and figured.
KE Sharquie, JR Al-Rawi, AA Noaimi, HM Al-Hassany, Journal of drugs in dermatology: JDD, 2012 - Cited by 47