In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.
In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
This study was conducted from February 2010 to December 2010. Water Samples were collected every two months in three stations in Baghdad city. The study involved the assessment of concentrations of some heavy metals such as: Chromium, Cadmium, Copper, Iron, Lead, Manganese, Nickel and Zinc. the values of chromium were undetected for the entire of the study, while the rest of the heavy metal were ranged between 0.001 -0.438 mg / l, ND -0.077 mg / L, ND -0.778 mg / l, 0.36 - 0.011 mg / l, 0.011-0 .08mg/ l, ND - 0.1985 mg / l, ND -0.0416 mg / l, respectively. The results showed that the concentrations of heavy metals were fluctuated during the study period, except Lead which have high concentrations and exceeded the permit limits in all statio
... Show MoreIn this paper, the researcher suggested using the Genetic algorithm method to estimate the parameters of the Wiener degradation process, where it is based on the Wiener process in order to estimate the reliability of high-efficiency products, due to the difficulty of estimating the reliability of them using traditional techniques that depend only on the failure times of products. Monte Carlo simulation has been applied for the purpose of proving the efficiency of the proposed method in estimating parameters; it was compared with the method of the maximum likelihood estimation. The results were that the Genetic algorithm method is the best based on the AMSE comparison criterion, then the reliab
... Show MorePlatinum nanoparticles (PtNPs) exhibit promising biomedical properties, but concerns about biocompatibility and synthesis-related toxicity remain. This study aimed to develop eco-friendly PtNPs using aqueous broccoli extract as a natural reducing and stabilizing agent, and to assess their multifunctional biomedical potential. PtNPs were synthesized through sonochemical reduction of K₂PtCl₆ in broccoli extract, followed by purification and comprehensive physicochemical characterization. UV–Vis confirmed nanoparticle formation at 253 nm, while XRD and FTIR analyses verified the crystalline FCC structure and phytochemical capping. TEM revealed mainly spherical PtNPs with an average core size of 14.83 ± 7.67 nm. Conversely, DLS showe
... Show MoreIn this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.
This research aims to estimate stock returns, according to the Rough Set Theory approach, test its effectiveness and accuracy in predicting stock returns and their potential in the field of financial markets, and rationalize investor decisions. The research sample is totaling (10) companies traded at Iraq Stock Exchange. The results showed a remarkable Rough Set Theory application in data reduction, contributing to the rationalization of investment decisions. The most prominent conclusions are the capability of rough set theory in dealing with financial data and applying it for forecasting stock returns.The research provides those interested in investing stocks in financial
... Show MoreIn this article we study the variance estimator for the normal distribution when the mean is un known depend of the cumulative function between unbiased estimator and Bays estimator for the variance of normal distribution which is used include Double Stage Shrunken estimator to obtain higher efficiency for the variance estimator of normal distribution when the mean is unknown by using small volume equal volume of two sample .