In this paper, we have extracted Silica from rice husk ash (RHA) by sodium hydroxide to produce sodium silicate. 3-(chloropropyl)triethoxysilane (CPTES) functionalized with sodium silicate via a sol-gel method in one pot synthesis to prepare RHACCl. Chloro group in compound RHACCl replacement in iodo group to prepere RHACI. The FT-IR clearly showed absorption band of C-I at 580 cm-1. Functionalized silica RHACI has high surface area (410 m2/g) and average pore diameter (3.8 nm) within mesoporous range. X-ray diffraction pattern showed that functionalized silica RHACI has amorphous phase .Thermogravemitric analysis (TGA) showed two decomposition stages and SEM morphology of RHACI showed that the particles have irregular shape. Atomic force microscope (AFM) technique was proved that the RHACI has a nanostructure The XPS spectra of I 3d for all the studied surfaces are presented in the peak located at 618.5 eV binding energy was associated with C–I bond.
The Ligand 2-(4-nitrophenyl azo)-2,4-dimethylphenol derived from 4-nitroaniline and 2,4-dimethylphenol was synthesized. The prepared ligand was identified by FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions ( CuII , ZnII ,CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio. Characterization of these compounds has been done on the basis of FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. On the basis of physicochemical data tetrahedral geometries were assigned for the complexes.
The present work involved preparation of new substituted and unsubstituted and poly imides (1-17) using reaction of acryloyl chloride with different amides (aliphatic ,aromatic) in the presence of a suitable solvent and amount tri ethyl amine (Et3N) with heating – the structure confirmation of all polymers were proved using FT-IR,1H-NMR,C13NMR and UV spectroscopy ,thermal analysis (TG) for some polymers confirmed their thermal stabilities . Other physical properties including softening and melting points, PH and solubility of the polymers were also measured
In recent years , the interest in gold (III) species have gained more and more attention for cancer chemotherapy , this was stimulating by the possibility to develop new agents with mode of action and clinical profile different from the established platinum metalodrugs.
With this frame, recently new square planar Au(III) complexes (Au(L)(L')n); where L=SCH2COO- ; L'=HSCH2COO- had been synthesized with S/O – donor ligands.
In this article and by the aim to replace, one of (L') ligand by anion chloride ligand (which supposedly more relevant for the biodistribution of the compound than for its pharmacodynamic effects), new complex (Au(L')
The purpose of this research work is to synthesize conjugates of NSAIDs (ibuprofen, and naproxen) with sulfadiazine as possible mutual prodrugs to overcome the local gastric irritation of NSAIDs with free carboxyl group by formation of ester linkage that supposed to remain intact in stomach and may hydrolyze in intestine chemically or enzymatically; in addition to that attempting to target the synthesized derivative to the colon by formation of azo bond that undergo reduction only by colonic bacterial azoreductaze enzyme to liberate the parent compound to act locally (treatment of inflammation and infections in colon)
Gelatin-grafted N- proflavine acryl amide was synthesized through two steps; firstly the Gelatin was grafted with acrylic acid free radically using Ammonium per-sulfate at 60℃, Then it was modified to its corresponding acyl chloride derivation, second step included the substitution with amino group of proflavine, in this research Gelatin was used as a natural nontoxic, water soluble polymer as a drug carrier. The prepared pro drug polymer was characterized by FTIR and 1H-NMR spectroscopies, Controlled drug release was studied in different pH values at 37℃. Many advantages were obtained comparing with other known methods.