In this study, the preparation and characterization of hyacinth plant /chitosan composite, as a heavy metal removal, were done. Water hyacinth plant (Eichhorniacrasspes) was collected from Tigris river in Baghdad. The root and shoot parts of plant were ground to powder. Composite materials were prepared at different ratios of plant part (from 2.9% to 30.3%, wt /wt) which corresponds to (30-500mg) of hyacinth plant (root and shoot) and chitosan. The results showed that all examined ratios of plant parts have an excellent absorption to copper (Cu (II)). Moreover, it was observed that 2.9% corresponds (30mg) of plant root revealed highest removal (82.7%) of Pb (II), while 20.23% of shoot removed 61% of Cd (II) within 24 hr. On the other hand, SEM images displayed a regular shape and high porosity of prepared samples, while FTIR spectra of composite materials showed the characteristic of raw materials bands, which give strong evidence of composite formation.
Earth dams are constructed mainly from soil. A homogenous earth dam is composed of only one material. The seepage through such dams is quite high. Upstream impervious blanket is one of the methods used to control seepage through the dam foundations. Bennet's method is one of the commonly used methods to design an impervious upstream blanket. Design charts are developed relating the length of blanket, total reservoir head, total base width of the dam (excluding downstream drainage), the coefficient of permeability of the blanket material, blanket thickness, foundation thickness, and coefficient of permeability of the foundation soil, based on the equations governing the Bennet's method for a homogenous earth dam with a blanket of uniform
... Show MoreThe present study was conducted to evaluate the effect of fungi Gigaspora margarita and Glomus desriticola in stimulating the resistance of the capsicum annuum L. towards the chromium and lead after 60 days, planting and using the pots in the glass house. The highest concentration of chromium and lead in the root was found in the presence of the mycorrhizal mixture (194.93, 150.40) μg / g, respectively, compared to the lowest concentration (90.69, 79.37) μg / g respectively, while the highest concentration of chromium and lead in the shoot was found in the presence of the mycorrhizal mixture (94.63, 79.33) μg / g respectively, compared with the lowest concentration in the control treatment (72.58, 60.70) μg / g respectively. The results
... Show MoreBackground: Vibration decreases the viscosity of composite, making it flow and readily fit the walls of the cavity. This study is initiated to see how this improved adaptation of the composite resin to the cavity walls will affect microleakage using different curing modes
Materials and methods: Standard Class V cavities were prepared on the buccal surface of sixty extracted premolars. Teeth were randomly assigned into two groups (n=30) according to the composite condensation (vibration and conventional) technique, then subdivided into three subgroups (n=10) according to light curing modes (LED-Ramp, LED-Fast and Halogen Continuous modes). Cavities were etched and bonded with Single Bond Universal
... Show MoreShadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show More