Peroxidase is a class of oxidation-reduction reaction enzyme that is useful for accelerating many oxidative reactions that protect cells from the harmful effects of free radicals. Peroxidase is found in many common sources like plants, animals and microbes and have extensive uses in numerous industries such as industrial, medical and food processing. In this study, P. aeruginosa was harvested to utilize and study its peroxidases. P. aeruginosa was isolated from a burn patient, and the isolate was verified as P. aeruginosa using staining techniques, biochemical assay, morphological, and a sensitivity test. The gram stain and biochemical test result show rod pink gram-negative bacteria, and ensure that the isolate was that of P. aeruginosa. Optimization for bacterial growth were done by used more than pH (5,7,9) and temperatures (32,35,37°C), and it was found that the best growth conditions were at pH 5.5, producing (4.5x108cells), and a temperature of 37°C, with (5.25x108cells) being produced. Intracellular enzymes were extracted by ultra-sonication that used frequencies of ultrasound 30 kHz for 20 min in 4 °C, and was centrifuged at 13000×g for 5min. The supernatant was then re-used as a crude enzymatic extract and the cell pellet was discarded. Purification of peroxidase was accomplished by using salt precipitation, dialysis, gel filtrations and ion exchange chromatographic techniques. The result shows that gel filtration has optimal specific activity and purification fold at (61 U/ml), purification fold 6 times and then the improvement enzyme was applied as H2O2 scavenging activity antioxidant by used three concentration of enzyme (10,40,60 µg/ml), and show higher scavenging activity at 60 µg/ml, which reached to 45% scavenging activity. The enzyme was also used as anticancer agent, which was verified by using three concentration of enzyme (10,15,20 µg/ml) which show a significant kill for Mcf-7cells at (15µg/ml), with cytotoxicity activity reaching (45%).
CUPPER(||)AND MERCURY (||)Complexes WITH SCHIFF BASE LIGAND FROM BENZIDIN WITH ISATIN AND BENZOIN:SYNTHESIS,SPECTRAL CHARACTERIZATION, THERMAL STUDIES AND BIOLOGICAL ACTIVITIES
Heterogeneous organic compounds play an important role in our daily life as they contribute in many medical and industrial fields and are in continuous development as a result of the preparation of new derivatives with different properties. From this premise, the goal of this work appears, which is preparation of (four, five, six, and seven) membered ring systems derived from furfural, by its reaction with different aromatic aldehydes, and record their antioxidant activity by using free radical scavenging method of DPPH radicals. The new ring systems are synthesized by reacting the prepared Schiff-bases with different ring closure agents (chloroacetyl chloride, mercaptoaceticacid, anthranilic acid, and phthalic anhydride), the prep
... Show MoreNew schiff bases series (VIII) a-e and 1,3-thiazolidin-4-one derivatives (IX) a-e containing the 1,2,4-triazole and 1,3,4-thiazazole rings were synthesized and screening their biological activities. These compounds were identified via Fourier transform infrared (FT-IR) spectra, some via Proton nuclear magnetic resonance (1H-NMR) and mass spectra. The biological results indicated that all of these compounds did not reveal antibacterial effectiveness against (Escherichia coli and Klebsiella species) (G-). Some of these compounds showed moderate antibacterial activity against (Staphylococcus aureus, and Staphylococcus epidermidis) (G+), and all compounds exhibited moderate activity against Candida albicans.
Corncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitate
... Show MoreThis research involves the synthesis of some sulphanyl benzimidazole derivatives (Ia-c), which were prepared from reaction of 2-mercaptobenzimidazole substituted benzyl halide, and structures were identified by spectral methods[FTIR, 1H-NMR and 13C-NMR].These compounds were investigated as corrosion inhibitors for carbon steel in 1M H2SO4 solution using weight loss, potentiostatic polarization methods; obtained results showed that the sulphanyl benzimidazole derivatives retard both cathodic and anodic reactions in acidic media, by virtue of adsorption on the carbon steel surface. This adsorption obeyed Langmuir’s adsorption isotherm. The inhibition efficiency of (Ia-c) ranging between (65-92) %. By using different Ib derivative conc
... Show MoreObjective: To evaluate two kinds of extraction (aqueous and ethanolic) for coriander using seeds, leaves and stems and
studying their antibacterial activity against nine different microorganisms.
Methodology: Coriander was selected to carry out this study. Seeds, leaves and stems were collected from local markets in
Baghdad then dried in shade for at least 10 days and grinded to fine powder. Aqueous hot extracts for 1hr. at (50
c) and
cold extracts for 24 hrs at (4
c) were performed by using seeds, leaves and stems then studied antibacterial effect against
nine different microorganisms by using well diffusion technique. Cold aqueous extracts of coriander seeds for 48 hrs. and
72 hrs and ethanolic extraction
Coagulation is the most important process in drinking water treatment. Alum coagulant increases the aluminum residuals, which have been linked in many studies to Alzheimer's disease. Therefore, it is very important to use it with the very optimal dose. In this paper, four sets of experiments were done to determine the relationship between raw water characteristics: turbidity, pH, alkalinity, temperature, and optimum doses of alum [ .14 O] to form a mathematical equation that could replace the need for jar test experiments. The experiments were performed under different conditions and under different seasonal circumstances. The optimal dose in every set was determined, and used to build a gene expression model (GEP). The models were co
... Show More