For many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated and compared to show the features of high order schemes. Furthermore, there is a plan to study the stability and accuracy properties of the present schemes and apply them to standard systems of time dependent partial differential equations in CFD.
The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreA method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show MoreThis work includes preparation of Az, Qz, and Tz derivatives from the reaction of Schiff base (Sb) derivative with anthranilic acid, chloroacetyl chloride, and sodium azide, as well as, the characterization via FT-IR, 1H-NMR, and 13CNMR. The anticorrosion inhibition of these compounds was studied and the measurements of carbon steel (CS) corrosion in sodium chloride solution 3.5% (blank) and inhibitor in solutions were calculated at a temperature range of 293-323 K by the technique of electrochemical polarization. In addition, some thermodynamic and kinetic activation parameters for inhibitor and blank solutions (Ea⋇, ΔH⋇, ΔS⋇, and ΔG⋇) were determined. The results showed high inhibition efficacy for all the prepared compounds,
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreAfter baking the flour, azodicarbonamide, an approved food additive, can be converted into carcinogenic semicarbazide hydrochloride (SEM) and biurea in flour products. Thus, determine SEM in commercial bread products is become mandatory and need to be performed. Therefore, two accurate, precision, simple and economics colorimetric methods have been developed for the visual detection and quantitative determination of SEM in commercial flour products. The 1st method is based on the formation of a blue-coloured product with λmax at 690 nm as a result of a reaction between the SEM and potassium ferrocyanide in an acidic medium (pH 6.0). In the 2nd method, a brownish-green colored product is formed due to the reaction between the SEM and phosph
... Show More