Enhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contrast value because of the added edge points from the two combined images that depend on the suggested algorithms. This enhancement in edge regions is measured and reaches to double in enhancing the contrast. Different methods are used to be compared with the suggested method.
There many methods for estimation of permeability. In this Paper, permeability has been estimated by two methods. The conventional and modified methods are used to calculate flow zone indicator (FZI). The hydraulic flow unit (HU) was identified by FZI technique. This technique is effective in predicting the permeability in un-cored intervals/wells. HU is related with FZI and rock quality index (RQI). All available cores from 7 wells (Su -4, Su -5, Su -7, Su -8, Su -9, Su -12, and Su -14) were used to be database for HU classification. The plot of probability cumulative of FZI is used. The plot of core-derived probability FZI for both modified and conventional method which indicates 4 Hu (A, B, C and D) for Nahr Umr forma
... Show MoreAttention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreCanonical correlation analysis is one of the common methods for analyzing data and know the relationship between two sets of variables under study, as it depends on the process of analyzing the variance matrix or the correlation matrix. Researchers resort to the use of many methods to estimate canonical correlation (CC); some are biased for outliers, and others are resistant to those values; in addition, there are standards that check the efficiency of estimation methods.
In our research, we dealt with robust estimation methods that depend on the correlation matrix in the analysis process to obtain a robust canonical correlation coefficient, which is the method of Biwe
... Show MoreThis study aimed to investigate the effect of total suspended solids (TSS) on the performance of a continuously operated dual-chamber microbial fuel cell (MFC) proceeded by primary clarifier to treat actual potato chips processing wastewater. The system was also tested in the absence of the primary clarifier and the results demonstrated a significant effect of TSS on the polarization curve of the MFC which was obtained by operating the graphite anodic electrode against Ag/AgCl reference electrode. The maximum observed power and current densities were decreased form 102.42 mW/m2 and 447.26 mA/m2 to 80.16 mW/m2 and 299.10 mA/m2, respectively due to the adverse effect of TSS. Also
... Show MoreRecently, the development of the field of biomedical engineering has led to a renewed interest in detection of several events. In this paper a new approach used to detect specific parameter and relations between three biomedical signals that used in clinical diagnosis. These include the phonocardiography (PCG), electrocardiography (ECG) and photoplethysmography (PPG) or sometimes it called the carotid pulse related to the position of electrode.
Comparisons between three cases (two normal cases and one abnormal case) are used to indicate the delay that may occurred due to the deficiency of the cardiac muscle or valve in an abnormal case.
The results shown that S1 and S2, first and second sound of the
... Show MoreIn this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
Abstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
The need for quick airborne transportation is critical, especially in emergencies. Drones with suspended payloads might be used to accomplish quick airborne transportation. Due to the environment or the drone's motion, the slung load may oscillate and lead the drone to fall. The altitude and attitude controls are the backbones of the drone's stability, and they must be adequately designed. Because of their symmetrical and simple structure, quadrotor helicopters are one of the most popular drone classes. In this work, a genetic algorithm with two weighted terms fitness function is used to adjust a Proportional-Integral-Derivative (PID) controller to compensate for the altitude and attitude controllers in a quadrotor drone
... Show MorePerformance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic
... Show More