Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different cancer types is important for cancer diagnosis and drug discovery, SGD-SVM is applied for classifying the most common leukemia cancer type dataset. The results that are gotten using SGD-SVM are much accurate than other results of many studies that used the same leukemia datasets.
Objective To highlight the main demographic characteristics and clinical profiles of female patients registered with breast cancer in Iraq; focusing on the impact of age.Methods This retrospective study enrolled 1172 female patients who were diagnosed with breast cancer at the Main Center for Early Detection of Breast Cancer/Medical City Teaching Hospital in Baghdad. Data were extracted from an established information system, developed by the principal author under supervision of WHO, that was based on valid clinical records of Iraqi patients affected by breast cancer. The recorded information regarding clinical examination comprised positive palpable lumps, bloody nipple discharge, skin changes, bilateral breast involvement, tumor
... Show MoreThis study aimed to evaluate the IHC expression of CDX2 protein in HGC patients and control groups and also to study the correlation between IHC expression of the CDX2 and different clinicopathological variables such as: age, gender, histopathological subtype, grade, and stage of the tumor in HGC cases. the retrospectively sectional study for the period from 2014 to 2018 included a total of 60 formalin fixed paraffin embedded blocks of the HGC tissue (partial or total gastrectomy specimens) that collected from the archived materials of the Department of Pathology of Baghdad Teaching Hospital and the Center of Gastrointestinal and Hepatic Diseases, and also some samples were collected from other private laboratories. The IHC expression of th
... Show MoreThis work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
This paper introduces a relation between resultant and the Jacobian determinant
by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) variables. This leads us to study the results of the type: , and use this relation to attack the Jacobian problem. The last section shows our contribution to proving the conjecture.
One of the most important problems in tablet process is to control the flow of the catalyst through the hopper; Controlling the flow can be done either by changing the size of particles or added the different lubricant (stearic acid, starch, graphite) or blending of different lubricants. The study showed that we can control (increase or decrease) on the flow of the catalyst through the hopper by blending different lubricants for the constant percentage. The flow increasing when particles size (0.6 mm) and then decrease with or without lubricants, no effect on flow when particles size lower than (0.2 mm) with use that lubricants, and good flow on (0.4 mm) when use stearic acid and starch.
Fiscal policy is one of the important economic tools that affect economic development in general and human development in particular through its tools (public revenues, public expenditures, and the general budget).
It was hoped that the effects of fiscal policy during the study period (2004-2007) will positively reflect on human development indicators (health, education, income) by raising these indicators on the ground. After 2003, public revenues in Iraq increased due to increased revenues. However, despite this increase in public budgets, the actual impact on human development and its indicators was not equivalent to this increase in financial revenues. QR The value of the general budget allocations ha
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreThe present research was conducted to investigate the effectiveness of a training program to improve some aspects of sensory integration disorder and its effect on self-direction among a sample of children with intellectual disabilities. The study sample consists of (10 subjects as an experimental group) were exposed to the training program، and the control group consists of (10 subjects as a control group) were not exposed to the training program. The study included the following tools: A scale of self-direction for intellectual disability (prepared by the researcher). Training program (prepared by the researcher). The Results of the study showed the following: There are no statistically significant differences between the means ranks
... Show MoreIn the last years, new non-invasively laser methods were used to detect breast tumors for pre- and postmenopausal females. The methods based on using laser radiation are safer than the other daily used methods for breast tumor detection like X-ray mammography, CT-scanner, and nuclear medicine.
One of these new methods is called FDPM (Frequency Domain Photon Migration). It is based on the modulation of laser beam by variable frequency sinusoidal waves. The modulated laser radiations illuminate the breast tissue and received from opposite side.
In this paper the amplitude and the phase shift of the received signal were calculated according to the orig
... Show More