Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different cancer types is important for cancer diagnosis and drug discovery, SGD-SVM is applied for classifying the most common leukemia cancer type dataset. The results that are gotten using SGD-SVM are much accurate than other results of many studies that used the same leukemia datasets.
The quality of groundwater is just as important as its quantity. The kinds and concentration of salts in groundwater depend on the environment, movement, and the source of the groundwater. During the field work, 20 samples have been collected from water wells from Al-Salman basin for two seasons represent wet and dry seasons in November 2017 and April 2018. After water well samples have been analyzed the Electrical conductivity values range from (2260 to 5500) μS/cm for dry season and range from (2540 to 5630) μS/cm for wet season, the Total dissolved solids values range from (1289 to 3582) ppm for dry season and range from (1710 to 3960) ppm for wet season, and pH values range from (7.11 to 7.3) for dry and wet seasons. The Hydroc
... Show MoreThe recent development in communication technologies between individuals allows for the establishment of more informal collaborative map data projects which are called volunteered geographic information (VGI). These projects, such as OpenStreetMap (OSM) project, seek to create free alternative maps which let users add or input new materials to the data of others. The information of different VGI data sources is often not compliant to any standard and each organization is producing a dataset at various level of richness. In this research the assessment of semantic data quality provided by web sources, e.g. OSM will depend on a comparison with the information from standard sources. This will include the validity of semanti
... Show MoreThe transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than othe
... Show MoreThe development of Web 2.0 has improved people's ability to share their opinions. These opinions serve as an important piece of knowledge for other reviewers. To figure out what the opinions is all about, an automatic system of analysis is needed. Aspect-based sentiment analysis is the most important research topic conducted to extract reviewers-opinions about certain attribute, for instance opinion-target (aspect). In aspect-based tasks, the identification of the implicit aspect such as aspects implicitly implied in a review, is the most challenging task to accomplish. However, this paper strives to identify the implicit aspects based on hierarchical algorithm incorporated with common-sense knowledge by means of dimensionality reduction.
The detection of diseases affecting plant is very important as it relates to the issue of food security, which is a very serious threat to human life. The system of diagnosis of diseases involves a series of steps starting with the acquisition of images through the pre-processing, segmentation and then features extraction that is our subject finally the process of classification. Features extraction is a very important process in any diagnostic system where we can compare this stage to the spine in this type of system. It is known that the reason behind this great importance of this stage is that the process of extracting features greatly affects the work and accuracy of classification. Proper selection of
... Show MoreThe current research aims to determine the requirements of Trends of International Mathematics and Science Study (TIMSS 2019) and to find out the extent to which the content of science textbooks for grades (1-4) in the Sultanate of Oman includes the requirements of (TIMSS 2019). Only the Cognitive Process dimension has been considered when conducting the analysis. The study population includes all science books from the first to the fourth grade for the academic year 2021-2022. The study identified and organized the requirements in the study tool, which is a list of requirements of (TIMSS 2019). After confirming its validity and reliability, the analysis was performed, and data were collected and analyzed statistically using frequencies
... Show MoreThis study aims to show, the strength of steel beam-concrete slab system without using shear connectors (known as a non-composite action), where the effect of the friction force between the concrete slab and the steel beam has been investigated, by using finite element simulation.
The proposed finite element model has been verified based on comparison with an experimental work. Then, the model was adopted to study the system strength with a different steel beam and concrete slab profile. ABAQUS has been adopted in the preparation of all numerical models for this study.
After validation of the numerical models, a parametric study was conducted, with linear and non-linear Regression analysis. An equation re
... Show MoreThe mucilage was isolated from mustard seeds and identification by some different methods like, thermo gravimetric, FTlR., X-ray powdered, proton NMR, FTIR spectra of the three gums contain different functional group in the gums, major peaks bands noticed were belong to OH (3410.15 – 3010.88) group from hydroxyl group, CH aliphatic (2925-2343.51), C-O (1072.42-1060.85) group and C=O 1743.65, Thermo chemical parameters of mucilage was evaluated and compared with the standard gums, Results indicated the mucilage was decomposed in 392°C and mass loss 55%, The X ray process found the mucilage had single not sharp peak
... Show MoreTrichomonas vaginalis is a causative agent of trichomoniasis , one of the most common non-viral sexually transmitted disease (STD) over all the world, especially in immunocompromised women such as pregnant. Wet smear and Giemsa stain are the current methods used in hospital to diagnosis trichomoniasis. DNA based diagnosis is still to be validated to diagnose the local isolates, the objective of the present study was to compare the conventional methods of disease diagnosis with the DNA-based method to diagnose Trichomonas incidence in local isolates. In the present study, 105 samples were collected from outpatient women (18-45 years) of Maternity hospital in Mosul who showed a classical presentation of Trichomonas
... Show MoreAbstract
The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.
In this, search th
... Show More