Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different cancer types is important for cancer diagnosis and drug discovery, SGD-SVM is applied for classifying the most common leukemia cancer type dataset. The results that are gotten using SGD-SVM are much accurate than other results of many studies that used the same leukemia datasets.
In this paper, the Azzallini’s method used to find a weighted distribution derived from the standard Pareto distribution of type I (SPDTI) by inserting the shape parameter (θ) resulting from the above method to cover the period (0, 1] which was neglected by the standard distribution. Thus, the proposed distribution is a modification to the Pareto distribution of the first type, where the probability of the random variable lies within the period The properties of the modified weighted Pareto distribution of the type I (MWPDTI) as the probability density function ,cumulative distribution function, Reliability function , Moment and the hazard function are found. The behaviour of probability density function for MWPDTI distrib
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreIn this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N
... Show MoreAbstract
The prevention of bankruptcy not only prolongs the economic life of the company and increases its financial performance, but also helps to improve the general economic well-being of the country. Therefore, forecasting the financial shortfall can affect various factors and affect different aspects of the company, including dividends. In this regard, this study examines the prediction of the financial deficit of companies that use the logistic regression method and its impact on the earnings per share of companies listed on the Iraqi Stock Exchange. The time period of the research is from 2015 to 2020, where 33 companies that were accepted in the Iraqi Stock Exchange were selected as a sample, and the res
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the
... Show MoreThe simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreThe purpose of this research is to find the estimator of the average proportion of defectives based on attribute samples. That have been curtailed either with rejection of a lot finding the kth defective or with acceptance on finding the kth non defective.
The MLE (Maximum likelihood estimator) is derived. And also the ASN in Single Curtailed Sampling has been derived and we obtain a simplified Formula All the Notations needed are explained.
In the last two decades, arid and semi-arid regions of China suffered rapid changes in the Land Use/Cover Change (LUCC) due to increasing demand on food, resulting from growing population. In the process of this study, we established the land use/cover classification in addition to remote sensing characteristics. This was done by analysis of the dynamics of (LUCC) in Zhengzhou area for the period 1988-2006. Interpretation of a laminar extraction technique was implied in the identification of typical attributes of land use/cover types. A prominent result of the study indicates a gradual development in urbanization giving a gradual reduction in crop field area, due to the progressive economy in Zhengzhou. The results also reflect degradati
... Show MorePerformance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic
... Show More