This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show MoreIn this work, the switching nonlinear dynamics of a Fabry-Perot etalon are studied. The method used to complete the solution of the differential equations for the nonlinear medium. The Debye relaxation equations solved numerically to predict the behavior of the cavity for modulated input power. The response of the cavity filled with materials of different response time is depicted. For a material with a response time equal to = 50 ns, the cavity switches after about (100 ns). Notice that there is always a finite time delay before the cavity switches. The switch up time is much longer than the cavity build-up time of the corresponding linear cavity which was found to be of the order of a few round-trip ti
... Show MoreThis paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreABSTRACT
Metal (II) complexes of Co, Ni, Cu and Zn with cefdinir C14H13N5O5S2 derivative (L) were synthesized and identification by elemental analysis CHNS Uv-Vis, FTIR, TGA, metal analysis AA, magnetic susceptibility and conduct metric measurement. by analysis the ligand behaves as a bidentate. For the cobalt complex, Tetrahedral geometry shape was suggested, while other complexes that have nickel, copper and zinc ions were proposed as octahedral geometry shape. The experimental method was studied for prevention of corrosion carbon steel in 3.5% NaCl by using a novel Cefdinir derivations drugs. The results showed that metal complex was a strong corro
... Show MoreA method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
Abstract
Theoretical and experimental methodologies were assessed to test curved beam made of layered composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fibe
... Show More