This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
The aim of this paper is introducing the concept of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal. Some properties of (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal have been studied and another characterizations have been given. The relationship of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal that states, a B- -module Ӽ is (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal , if and only if for any two ɱ-element sub-sets and of Ӽɳ, if , for each j = 1, …, ɱ, i = 1,…, ɳ and implies Ạɳ( ) Ạɳ( have been proved..