Preferred Language
Articles
/
bsj-4248
Interactive Effects of Major Insect Pest of Watermelon on its Yield in Wukari, Nigeria
...Show More Authors

Watermelon is known to be infested by multiple insect pests both simultaneously and in sequence. Interactions by pests have been shown to have positive or negative, additive or non additive, compensatory or over compensatory effects on yields. Hardly has this sort of relationship been defined for watermelon vis-à-vis insect herbivores. A 2-year, 2-season (4 trials) field experiments were laid in the Research Farm of Federal University Wukari, to investigate the interactive effects of key insect pests of watermelon on fruit yield of Watermelon in 2016 and 2017 using natural infestations. The relationship between the dominant insect pests and fruit yield were determined by correlation (r) and linear regression (simple and multiple) analyses. Multimodel inference was used to define the predictor that impacted on fruit yield the most. Results indicated that, each pest had highly negative and significant (p < 0.05) impact on yield (range of r = -0.78 to -0.92), and that the coefficient of determination (R2) values (which were indicative of the effect of pests or their complexes on yield) did not rise on addition of interaction terms. This reveals a non additive negative impact of insect interactions on the fruit yield of watermelon. This may be due to among others; competition by the pest, phenology, plant defenses or changes in nutritional content of the plant. The need to therefore employ discriminate analysis to ascertain the contribution of each pest to yield loss when multiple pest infest a crop is thus highlighted.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Comparison between Electroplating and Electroless on Plastic Surface
...Show More Authors

 

We report a method of converting non-conductive plastic surfaces into conductive by plating either copper electroless or copper electroplating -carbon black containing bending Agent onto Perspex plastics . Various approaches have been studied in order to comparing properties of the plated copper for two methods such as scanning electron microscopy (SEM),thickness, roughness, porosity, tensile Strength and elongation. The results show that the surface of electroplating was uniform, compact, and continuous and it had an obvious metallic sheen, while the surface of plated copper for electroless for it had many pores. Also observed that the coating was composed of small cells. Thes

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
On The Queuing System M/Er/1/N
...Show More Authors

In this paper the queuing system (M/Er/1/N) has been considered in equilibrium. The method of stages introduced by Erlang has been used. The system of equations which governs the equilibrium probabilities of various stages has been given. For general N the probability of j stages of service are left in the system, has been introduced. And the probability for the empty system has been calculated in the explicit form.

View Publication Preview PDF
Crossref
Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Ebonite linings Based on Natural and Synthetic Rubber
...Show More Authors

 The corrosion of metals is of great economic importance. Estimates show that the quarter of the iron and the steel produced is destroyed in this way. Rubber lining has been used for severe corrosion protection because NR and certain synthetic rubbers have a basic resistance to the very corrosive chemicals particularly acids. The present work includes producing ebonite from both natural and synthetic rubbers ; therefore, the following materials were chosen to produce ebonite rubber: a) Natural rubber (NR). b) Styrene butadiene rubber (SBR). c) Nitrile rubber (NBR). d) Neoprene rubber (CR) [WRT]. The best ebonite vulcanizates are obtained in the presence of 30 Pphr sulfur, and carbon black as reinforcing filler. The relation between

... Show More
View Publication Preview PDF
Publication Date
Wed May 01 2019
Journal Name
Iraqi Journal Of Science
Optical Images Fusion Based on Linear Interpolation Methods
...Show More Authors

Merging images is one of the most important technologies in remote sensing applications and geographic information systems. In this study, a simulation process using a camera for fused images by using resizing image for interpolation methods (nearest, bilinear and bicubic). Statistical techniques have been used as an efficient merging technique in the images integration process employing different models namely Local Mean Matching (LMM) and Regression Variable Substitution (RVS), and apply spatial frequency techniques include high pass filter additive method (HPFA).  Thus, in the current research, statistical measures have been used to check the quality of the merged images. This has been carried out by calculating the correlation a

... Show More
View Publication Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Free Head Shear Test on Decomposed Granite Soil
...Show More Authors

The study presents the test results of Completely Decomposed Granite (CDG) soil tested under drained triaxial compression, direct shear and simple shear tests. Special attention was focused on the modification of the upper halve of conventional Direct Shear Test (DST) to behave as free
head in movement along with vertical strain control during shear stage by using Geotechnical Digital System (GDS). The results show that Free Direct Shear Test (FDST) has clear effect on the measured shear stress and vertical strain during the test. It has been found that shear strength
parameters measured from FDST were closer to those measured from simple shear and drained triaxial compression test. This study also provides an independent check on

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Adsorption Study for Chromium (VI) on Iraqi Bentonite
...Show More Authors

The subject of this research involves studying adsorption to remove hexavalent chromium Cr(VI) from aqueous solutions. Adsorption process on bentonite clay as adsorbent was used in the Cr(VI) concentration range (10-100) ppm at different temperatures (298, 303, 308 and 313)K, for different periods of time. The adsorption isotherms were obtained by obeying Langmuir and Freundlich adsorption isotherm with R2 (0.9921-0.9060) and (0.994-0.9998), respectively. The thermodynamic parameters were calculated by using the adsorption process at four different temperatures the values of ?H, ?G and ?S was [(+6.582 ? +6.547) kJ.mol-1, (-284.560 ? -343.070) kJ.mol-1 and (+0.977 ? +1.117) kJ.K-1.mol-1] respectively. This data indicates the spontaneous sorp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
On New Weibull Inverse Lomax Distribution with Applications
...Show More Authors

In this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data  sets

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Telecom Churn Prediction based on Deep Learning Approach
...Show More Authors

      The transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than othe

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Secure Location Privacy Transmitting Information on Cellular Networks
...Show More Authors

      As smartphones incorporate location data, there is a growing concern about location  privacy as smartphone technologies advance. Using a remote server, the mobile applications are able to capture the current location coordinates at any time and store them. The client awards authorization to an outsider. The outsider can gain admittance to area information on the worker by JSON Web Token (JWT). Protection is giving cover to clients, access control, and secure information stockpiling. Encryption guarantees the security of the location area on the remote server using the Rivest Shamir Adleman (RSA) algorithm. This paper introduced two utilizations of cell phones (tokens, and location). The principal application can give area inf

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Network Traffic Prediction Based on Time Series Modeling
...Show More Authors

    Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and

... Show More
View Publication Preview PDF
Scopus Crossref