Recent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and pollute the environment. Emergency messages notify the drivers about road accidents and congestions, and how to avoid the dangerous zones. This paper classifies the emergency messages schemes into three categories based on relay node, clustering and infrastructure. The capabilities and limitations of the emergency messages schemes are investigated in terms of dissemination process, message forward techniques, road awareness and performance metrics. Moreover, it highlights VANET-based challenges and open research problems to provide the solutions for a safer, more efficient and sustainable future ITS.
Sentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discrimina
... Show MoreThe precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show MoreCrop production is reduced by insufficient and/or excess soil water, which can significantly decrease plant growth and development. Therefore, conservation management practices such as cover crops (CCs) are used to optimize soil water dynamics, since CCs can conserve soil water. The objective of this study was to determine the effects of CCs on soil water dynamics on a corn (
Recently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show More