In this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
TI1e Web service securi ty challenge is to understand and assess the risk involved in securing a web-based service today, based on our existing security technology, and at the same time tmck emerging standards and understand how they will be used to offset the risk in
new web services. Any security model must i llustrate how data can
now through an application and network topology to meet the
requirements defined by the busi ness wi thout exposing the data to undue risk. In this paper we propose &n
... Show MoreThe aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions and for exponentially fitting problems, with being the problem’s major frequency utilized to improve the precision of the method. The modified method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a framework of equations that can be sol
... Show MoreIn this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP). The given BVP is written in its discrete (DI) weak form (WEF), and is proved that it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results
... Show MoreThe theory of probabilistic programming may be conceived in several different ways. As a method of programming it analyses the implications of probabilistic variations in the parameter space of linear or nonlinear programming model. The generating mechanism of such probabilistic variations in the economic models may be due to incomplete information about changes in demand, production and technology, specification errors about the econometric relations presumed for different economic agents, uncertainty of various sorts and the consequences of imperfect aggregation or disaggregating of economic variables. In this Research we discuss the probabilistic programming problem when the coefficient bi is random variable
... Show MoreThe aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
Because of the vulnerability of the concept of historical cost adopted as a basis for accounting measurement to many of the criticisms in reaction counter to the concept of fair value, the aim of the research is to try to make a comparison between the historical cost and fair value to prove the health and safety of any of the measurement best for the preparation of financial statements and through the state of each of the two study secretary and good financial investment after being diagnosed with a realistic problem is the limitations of the concept of historical cost in the evaluation of assets in spite of the supposed information disclosed in the financial statements compared to appropriate property for the concept of the fair value o
... Show MoreIn this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .