Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm, to detect malicious nodes in an OBS network. The proposed semi-supervised model was trained and validated with small amount data from a selected dataset. Experiments show that the model can classify the nodes into either behaving or not-behaving classes with 90% accuracy when trained with just 20% of data. When the nodes are classified into behaving, not-behaving and potentially not-behaving classes, the model shows 65.15% and 71.84% accuracy if trained with 20% and 30% of data respectively. Comparison with some notable works revealed that the proposed model outperforms them in many respects.
The main goal of the current research is to know -Environmental problems included in the content of the two science books (chemistry units) for intermediate stage
A list of environmental problems had been prepared and consisting of (8) main areas which are (air and atmosphere pollution, water pollution, soil pollution, energy, disturbance of biodiversity and environmental balance, waste management, food and medicinal pollution, investment of mineral wealth). Of which (60) sub-problems, at that time the researcher analyzed the two science books (two chemistry units) for the intermediate stage of the academic year (2020-2021) in light of the list that was prepared, and the validity and consisten
... Show MoreThis study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
Conventional identification of three coccoid green algae isolates was attempted to characterize the studied algae morphologically under compound microscope, which demonstrated confusional phenomenal convergence; all were classified microscopically as the green alga Chlorella vulgaris Beijerinck, 1890.
Phylogenetic studies were conducted to settle the argument about the phenotype by studying the genotype. Genotype the promising field in advance classification by using 18S rRNA and compared to GenBank database using to search the related sequences. The determined sequences showed high a similarity to the strains registered in GenBank.
&
... Show MoreHepatitis C virus (HCV) is a liver disease that affects14 million people. Feasible research was conducted for identifying the genotypes and allele frequency of some single nucleotide polymorphisms (SNPs) of the IL-28β genes and their predictive role in disease incidence in Iraqi patients. The SNPs (rs28416813, rs4803219, rs11881222, and rs8103142) of IL-28β have been associated with susceptibility to several diseases. Ninety eight (98) HCV patients were included in this research; with average age ± SE (42.28 ± 3.44) years. Also, 80 healthy people (with average age ± SE (29.40 ± 2.84) years) were included as a control group. The SNPs were detected by allele-specific PCR (polymerase chain reaction) using specific primers. The re
... Show MorePromoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show More