Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm, to detect malicious nodes in an OBS network. The proposed semi-supervised model was trained and validated with small amount data from a selected dataset. Experiments show that the model can classify the nodes into either behaving or not-behaving classes with 90% accuracy when trained with just 20% of data. When the nodes are classified into behaving, not-behaving and potentially not-behaving classes, the model shows 65.15% and 71.84% accuracy if trained with 20% and 30% of data respectively. Comparison with some notable works revealed that the proposed model outperforms them in many respects.
In this work a chemical sensor was built by using Plane Wave Expansion (PWE) modeling technique by filling the core of 1550 hollow core photonic crystal fiber with chloroform that has different concentrations after being diluted with distilled water. The minimum photonic bandgap width is.0003 and .0005 rad/sec with 19 and 7 cells respectively and a concentration of chloroform that filled these two fibers is 75%.
In this paper, the first integrals of Darboux type of the generalized Sprott ET9 chaotic system will be studied. This study showed that the system has no polynomial, rational, analytic and Darboux first integrals for any value of . All the Darboux polynomials for this system were derived together with its exponential factors. Using the weight homogenous polynomials helped us prove the process.
Objective: To review and identify the major drivers for COVID-19 vaccine acceptance. Methods: A scoping review of studies of COVID-19 vaccine perceptions and barriers to using the COVID-19 vaccines. Two search engines, including PubMed and Google Scholar, were purposefully searched. Results: Eight studies from different countries were reviewed to categorize factors influencing people's acceptance of COVID-19 according to the Health Belief Model (HBM). Perceived susceptibility, and severity of the disease (COVID-19), in addition to perceived benefits of COVID-19 vaccination and "cues to action", can enhance vaccination acceptance. In contrast, perceived barriers to the COVID-19 vaccine can increase people's hesitancy to be vaccinated
... Show MoreBackground: Piezosurgery improved the split approach by making it safer, easier, and less prone to complications when treating extremely atrophic crests. Densah drills, with their unique design, expand the ridge by densifying bone in a reverse, non-cutting mode. Objective: To assess the effectiveness of sagittal piezosurgery, which involves cutting bone to the full implant depth and then expanding it using osseodensification drills. We use this technique to expand narrow alveolar bones and simultaneously place dental implants in the maxillary and mandibular arches. Methods: Fourteen patients received 31 dental implants. The maxillary arch received 19, and the mandible received 12 dental implants. This study will include patients who
... Show MoreIn this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.
In present days, drug resistance is a major emerging problem in the healthcare sector. Novel antibiotics are in considerable need because present effective treatments have repeatedly failed. Antimicrobial peptides are the biologically active secondary metabolites produced by a variety of microorganisms like bacteria, fungi, and algae, which possess surface activity reduction activity along with this they are having antimicrobial, antifungal, and antioxidant antibiofilm activity. Antimicrobial peptides include a wide variety of bioactive compounds such as Bacteriocins, glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids, and neutral lipids. Bioactive peptides derived from various natural sources like bacte
... Show More
... Show MoreRecently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical.
... Show More