Colloidal silver nanoparticles were prepared by single step green synthesis using aqueous extracts of the leaves of thyme as a function of different molar concentration of AgNO3 (1,2,3,4 mM(. The Field Emission Scanning Electron Microscopy (FESEM), UV-Visible and X-ray diffraction (XRD) were used to characterize the resultant AgNPs. The surface Plasmon resonance was observed at wavelength of 444 nm. The four intensive peaks of XRD pattern indicate the crystalline nature and the face centered cubic structure of the AgNPs. The average crystallite size of the AgNPs ranged from 18 to 22 nm. The FESEM image illustrated the well dispersion of the AgNPs and the spherical shape of the nanoparticles with a particle size distribution between 13 to 50 nm.
Medicinal plants contain bioactive substances that are highly bioavailable in extracts or pure molecules, making them promising for therapeutic applications and precursors for chemo-pharmaceutical semi-synthesis. Harpagophytum procumbens (Devil’s Claw) is widely recognized as one of the most potent therapeutic herbs. This study aimed to extract seeds from H. procumbens using two types of solvents and to assess both qualitative and quantitative aspects of the extracts. The two extracts were evaluated for antibacterial and anti-biofilm activities using agar well diffusion assays against four bacterial isolates and two yeast isolates. Qualitative analysis identified the presence of alkaloids, flavonoids, tannins, saponins, and terpen
... Show MoreThis paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions and for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency is used. The novel method is more accurate than the conventional Runge-Ku
... Show MoreThis paper presents an efficient methodology to design modified evaporative air-cooler for winter air-conditioning in Baghdad city as well as using it for summer air-conditioning by adding a heating process after the humidification process. laboratory tests were performed on a direct evaporative cooler (DEC) followed by passing the air on hot water through heat exchanger placed in the coolers air duct exit. The tests were conducted on the 2nd of December /2011 when the ambient temperature was 8.1°C and the relative humidity was (68%). The air flow rate is assumed to vary between 0.069 to 0.209 kg/s with constant water flow rate of 0.03 kg/s in the heat exchanger. The performance is reported in terms of effectiveness of DEC, satura
... Show Moreتركز هذا البحث على تصميم عدسة كهروستاتيكية ثلاثية الاقطاب اسطوانية الشكل متحدة المركز ومفصولة بفتحة هوائية . تم حل معادلة لابلاس بطريقة كثافة الشحنة في مجال بصريات الجسيمات المشحونة اللانسبية وبغياب تأثيرات شحنة الفضاء إن توزيع الجهد المحوري لعدسة ثلاثية كهروستاتيكية تم حسابه باستخدام كثافة الشحنة الموزعة على الاقطاب، الناتجة من تسليط فولتية معينة على الاقطاب اعتمادا على ق
... Show MoreThe 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of ads
... Show MoreThe penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show MoreIn the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreBy driven the moment estimator of ARMA (1, 1) and by using the simulation some important notice are founded, From the more notice conclusions that the relation between the sign and moment estimator for ARMA (1, 1) model that is: when the sign is positive means the root gives invertible model and when the sign is negative means the root gives invertible model. An alternative method has been suggested for ARMA (0, 1) model can be suitable when
The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w
... Show More