In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.
The research presents the reliability. It is defined as the probability of accomplishing any part of the system within a specified time and under the same circumstances. On the theoretical side, the reliability, the reliability function, and the cumulative function of failure are studied within the one-parameter Raleigh distribution. This research aims to discover many factors that are missed the reliability evaluation which causes constant interruptions of the machines in addition to the problems of data. The problem of the research is that there are many methods for estimating the reliability function but no one has suitable qualifications for most of these methods in the data such
Abstract
In this research we been estimated the survival function for data suffer from the disturbances and confusion of Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on t
... Show MoreThe ration card system is a kind of support provided by the state to individuals through the provision of essential goods at subsidized prices during the period of war or crisis. For many years, the ration card was an essential source of food supplies to Iraqis, especially under the economic siege of the nineties, But after the events of 2003 and the passage of Iraq's political and economic changes required radical reforms in the ration card system according to the recipes of the International Monetary Fund. It was evident from the estimation of the demand function that the price did not have the greatest impact on this type of goods because the ration card items are subsidized by the government. There is also a
... Show MoreIn this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show MoreThis paper is devoted to compare the performance of non-Bayesian estimators represented by the Maximum likelihood estimator of the scale parameter and reliability function of inverse Rayleigh distribution with Bayesian estimators obtained under two types of loss function specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking into consideration the informative and non-informative priors. The performance of such estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo simulation experiments are conducted in order to obtain the required results.
Abstract:
Since the railway transport sector is very important in many countries of the world, we have tried through this research to study the production function of this sector and to indicate the level of productivity under which it operates.
It was found through the estimation and analysis of the production function Kub - Duglas that the railway transport sector in Iraq suffers from a decline in the level of productivity, which was reflected in the deterioration of the level of services provided for the transport of passengers and goods. This led to the loss of the sector of importance in supporting the national economy and the reluctance of most passengers an
... Show MoreIn this paper, we used the maximum likelihood estimation method to find the estimation values ​​for survival and hazard rate functions of the Exponential Rayleigh distribution based on a sample of the real data for lung cancer and stomach cancer obtained from the Iraqi Ministry of Health and Environment, Department of Medical City, Tumor Teaching Hospital, depending on patients' diagnosis records and number of days the patient remains in the hospital until his death.
In this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes