In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.
This paper deals with the mathematical method for extracting the Exponential Rayleighh distribution based on mixed between the cumulative distribution function of Exponential distribution and the cumulative distribution function of Rayleigh distribution using an application (maximum), as well as derived different statistical properties for distribution, and present a structure of a new distribution based on a modified weighted version of Azzalini’s (1985) named Modified Weighted Exponential Rayleigh distribution such that this new distribution is generalization of the distribution and provide some special models of the distribution, as well as derived different statistical properties for distribution
The aim of this research is to explore the time and space distribution of traffic volume demand and investigate its vehicle compositions. The four selected links presented the activity of transportation facilities and different congestion points according to directions. The study area belongs to Al-Rusafa sector in Baghdad city that exhibited higher rate of traffic congestions of working days at peak morning and evening periods due to the different mixed land uses. The obtained results showed that Link (1) from Medical city intersection to Sarafiya intersection, demonstrated the highest traffic volume in both peak time periods morning AM and afternoon PM where the demand exceeds the capacity along the link corridor. Also, higher values f
... Show Moreالمستخلـص
تم في هذا البحث دراسة الطرائق اللامعلمية الرتيبة لتقدير دالة الأنحدار اللامعلمي، ومعالجة القيم الشاذة الموجودة في دالة الأنحدار اللامعلمي لجعل الدالة رتيبة (متزايدة أو متناقصة).
لذا سنقوم أولاً بتقدير دالة الأنحدار اللامعلمي بإستخدام ممهد Kernel ومن ثم تطبيق الطرائق الرتيبة لجعل الدالة متزايدة إذ سنتناول ثلاث طرائق للتقدير:-
1- طريقة ste
... Show MoreA comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin
... Show MoreAbstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreWe are used Bayes estimators for unknown scale parameter when shape Parameter is known of Erlang distribution. Assuming different informative priors for unknown scale parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp
... Show MoreThis work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show More