Biosynthesis of nanoparticles has received considerable attention due to the growing need to develop environmentally benign nanoparticle synthesis processes that do not use toxic chemicals. Therefore, biosynthetic methods employing both biological agents such as bacteria and fungus or plant extracts have emerged as a simple and a viable alternative to chemical synthetic and physical method .It is well known that many microbes produce an organic material either intracellular or extracellular which is playing important role in the remediation of toxic metals through reduction of metal ions and acting as interesting Nano factories. As a result, in the present study Ag NPs were synthesized by two methods biosynthetic technique using supernatant of Corynebacterium glutamicum that isolated from soil and green synthesis method by using plant extracts of fresh green plants.Ag NPs which synthesized by two methods were investigated visually by monitoring the color shift of reaction mixture from pale yellow to brown color, UV-Visible spectrophotometer was used to measure maximum absorbance of synthesized Ag NPs. The nanoparticles synthesized from Corynebacterium glutamicum exhibited maximum antimicrobial activity against selected pathogenic and environmental strains more than Ag NPs synthesized by green synthesis method from Spinacia oleracea, Malva parviflora and Eruca sativa. plant extracts
This research includes the synthesis of some new different heterocyclic derivatives of 5-Bromoisatin. New sulfonylamide, diazine, oxazole, thiazole and 1,2,3-triazole derivatives of 5-Bromoisatin have been synthesized. The synthesis process started by the reaction of 5-Bromoisatin with different reagents to obtain schiff bases of 5-Bromoisatin intermediate compounds(1, 8, 19) by using glacial acetic acid as a catalyst in three routes. The first route, 5-Bromoisatin reacted with p-aminosulfonylchloride to product compound(1), then converted to sulfonyl amide derivatives(2-7) by the reaction of compound(1) with different substituted primary aromatic amine in absolute ethanol. The second route includes the reaction of 5-Bromoisatin rea
... Show MoreThe organic compound imidazole has the chemical formula C3N2H4. Numerous significant biological compounds contain imidazole. The amino acid histidine is the most prevalent. The substituted imidazole derivatives have great potential for treating a variety of systemic fungi infections. Thiourea is an organosulfur compound with the formula SC(NH2)2. It is a reagent in organic synthesis. In this paper, some new imidazole and thiourea derivatives are synthesized, characterized, and studied for their biological activity. These new compounds were synthesized from the starting material terephthalic acid, which was transformed to corresponding ester [I] by the refluxing of diacid with methanol in the presence of H2SO4 as a catalyst, compound [I] con
... Show MoreThe research includes a clinical study of Arginase and its relation with uterine fibroid. The normal value of arginase activity in female serum was found to be (0.52 ± 0.02 IU/L) in healthy group at age (35-55) years. The study also showed a highly significant increase in arginase activity (7.99 ± 0.23 IU/L) in serum of uterine fibroid patients group at (35-55years) in comparison to healthy.The results also indicated a highly significant increase in the level of progesterone, estradiol, prolactin, peroxynitrite and malondialdehyde in patients group. While a highly significant decrease in concentration of adiponectin in patients group was found in comparison to healthy.
Biological activity substances was investigated in watery extract of lentil which found to contain phenols, tannin, saponins and resins while, flavons, terpens and steroids were not exist in the extract details explained that 5%, 10% of lentil extract largly inhibited the growth of Psedumonas aeruginosa then Escherichia coli and Bacillus subtilis. The growth of both Staphylococcus aureus and Salmonella typhimurium were slightly affected by all extract concentration. Extracellular protease were screened in all bacterial species under study. Complete inhibition was achieved for extracellular protease while different percentage of protease inhibition were seen for intracellular proteases.
Background: The beneficial gut bacterium E. coli can cause blood poisoning, diarrhoea, and other gastrointestinal and systemic disorders. Objective: This study amid to examines the antibiofilm activity of Laurus nobilis leaves extract on E. coli isolates and compares pre- and post-treatment gene expression of fimA and papC genes. Subjects and Methods: Ten isolates of E. coli were obtained from the Genetic Engineering and Biotechnology Institute, University of Baghdad, which was previously collected from Baghdad city hospitals and diagnosed by chemical tests, the diagnosis was confirmed using VITEK-2 System. The preparation of the aqueous and methanolic Laurus nobilis leaves extracts was done by using the maceration method and Soxhlet appara
... Show More