Preferred Language
Articles
/
bsj-4098
Splitting the One-Dimensional Wave Equation. Part I: Solving by Finite-Difference Method and Separation Variables
...Show More Authors

In this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease errors for output force solution. It is obvious from figures how error affects the results and zeroth order stables the solution.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of The College Of Basic Education
Solving Job-Shop Scheduling Problem Using Genetic Algorithm Approach
...Show More Authors

Publication Date
Sat Oct 01 2016
Journal Name
International Journal Of Pure And Apllied Mathematics
A SEMI ANALYTICAL ITERATIVE TECHNIQUE FOR SOLVING DUFFING EQUATIONS
...Show More Authors

View Publication
Crossref (11)
Crossref
Publication Date
Sat Jul 01 2017
Journal Name
Journal Of King Saud University - Science
A semi-analytical iterative technique for solving chemistry problems
...Show More Authors

View Publication
Crossref (17)
Crossref
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial
...Show More Authors

A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
Two-dimensional Crystallization of Silica nanospheres using Coplanar DC Electric field
...Show More Authors

Abstract:Two-dimensional crystal has been achieved and controlled with the aid of DC electric field applied between two electrodes at 5 millimeters separating distance between them. Sol-gel method has been used to prepared nanosilica particle which used in this work as well as TiO2 nanopaowder. The assembly of the silica particles is due to the interaction between the electrical force, the particles dipole, and the interaction between the particles themselves. When a DC voltage is applied, the particles accumulated and crystallized on the surface between the electrodes. The Light diffraction demonstrates that the hexagonal crystal is always oriented with one axis along the direction of the field. The particles disassemble when the field is

... Show More
Preview PDF
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Two-dimensional Crystallization of Silica nanospheres using Coplanar DC Electric field
...Show More Authors

Two-dimensional crystal has been achieved and controlled
with the aid of DC electric field applied between two electrodes at 5
millimeters separating distance between them. Sol-gel method has
been used to prepared nanosilica particle which used in this work as
well as TiO2 nanopaowder. The assembly of the silica particles is
due to the interaction between the electrical force, the particles
dipole, and the interaction between the particles themselves. When a
DC voltage is applied, the particles accumulated and crystallized on
the surface between the electrodes. The Light diffraction
demonstrates that the hexagonal crystal is always oriented with one
axis along the direction of the field. The particles disass

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 19 2023
Journal Name
Aip Conference Proceedings
Designing a database for a three dimensional model using geomatics techniques
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Dec 15 2021
Journal Name
Abstract And Applied Analysis
Dynamical Behaviors of a Fractional-Order Three Dimensional Prey-Predator Model
...Show More Authors

In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami

... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Sat Feb 01 2025
Journal Name
Algorithms
Three-Dimensional Object Recognition Using Orthogonal Polynomials: An Embedded Kernel Approach
...Show More Authors

Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc

... Show More
View Publication
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Public Health Research & Development
Impact of Breast Feeding Duration on the Presence of <i>Candida</i> in Relation to Nonnutritive Sucking Habit among Group of Iraqi Children
...Show More Authors

View Publication
Crossref