In this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease errors for output force solution. It is obvious from figures how error affects the results and zeroth order stables the solution.
Single long spiral tube column pressure swing adsorption (PSA) unit, 25 mm diameter, and 6 m length was constructed to study the separation of water from ethanol at azeotropic concentration of 95 wt%. The first three meters of the column length acted as a vaporizer and the remaining length acted as an adsorber filled by commercial 3A zeolite. The effect of pressure, temperature and feed flow rate on the product ethanol purity, process recovery and productivity were studied. The results showed that ethanol purity increased with temperature and pressure and decreased with feed flow rate. The purity decreased with increasing productivity. The purity range was 98.9 % to 99.6 %, the recovery range was 0.82 to 0.92 and the productivity range w
... Show MoreThis paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreA condense study was done to compare between the ordinary estimators. In particular the maximum likelihood estimator and the robust estimator, to estimate the parameters of the mixed model of order one, namely ARMA(1,1) model.
Simulation study was done for a varieties the model. using: small, moderate and large sample sizes, were some new results were obtained. MAPE was used as a statistical criterion for comparison.
This paper presents a three-dimensional Dynamic analysis of a rockfill dam with different foundation depths by considering the dam connection with both the reservoir bed and water. ANSYS was used to develop the three-dimensional Finite Element (FE) model of the rockfill dam. The essential objective of this study is the discussion of the effects of different foundation depths on the Dynamic behaviour of an embanked dam. Four foundation depths were investigated. They are the dam without foundation (fixed base), and three different depths of the foundation. Taking into consideration the changing of upstream water level, the empty, minimum, and maximum water levels, the results of the three-dimensional F
An approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly
In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show More