This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
Estimating multivariate location and scatter with both affine equivariance and positive break down has always been difficult. Awell-known estimator which satisfies both properties is the Minimum volume Ellipsoid Estimator (MVE) Computing the exact (MVE) is often not feasible, so one usually resorts to an approximate Algorithm. In the regression setup, algorithm for positive-break down estimators like Least Median of squares typically recomputed the intercept at each step, to improve the result. This approach is called intercept adjustment. In this paper we show that a similar technique, called location adjustment, Can be applied to the (MVE). For this purpose we use the Minimum Volume Ball (MVB). In order
... Show MoreIn this paper, a new form of 2D-plane curves is produced and graphically studied. The name of my daughter "Noor" has been given to this curve; therefore, Noor term describes this curve whenever it is used in this paper. This curve is a form of these opened curves as it extends in the infinity along both sides from the origin point. The curve is designed by a circle/ ellipse which are drawing curvatures that tangent at the origin point, where its circumference is passed through the (0,2a). By sharing two vertical lined points of both the circle diameter and the major axis of the ellipse, the parametric equation is derived. In this paper, a set of various cases of Noor curve are graphically studied by two curvature cases;
... Show MoreMany numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
The 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .
In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.
Note:- ns : small sample ; nm=median sample
... Show MoreAbstract:
This study is studied one method of estimation and testing parameters mediating variables in a structural equations model SEM is causal steps method, in order to identify and know the variables that have indirect effects by estimating and testing mediation variables parameters by the above way and then applied to Iraq Women Integrated Social and Health Survey (I-WISH) for year 2011 from the Ministry of planning - Central statistical organization to identify if the variables having the effect of mediation in the model by the step causal methods by using AMOS program V.23, it was the independent variable X represents a phenomenon studied (cultural case of the
In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
The goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed