This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
The research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration cur
... Show MoreWe present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
Digital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT) is based on the principle of designing different filters for different scales.
First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image .
&nbs
... Show MoreIs in this research review of the way minimum absolute deviations values based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.
This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
The aim of the thesis is to estimate the partial and inaccessible population groups, which is a field study to estimate the number of drug’s users in the Baghdad governorate for males who are (15-60) years old.
Because of the absence of data approved by government institutions, as well as the difficulty of estimating the numbers of these people from the traditional survey, in which the respondent expresses himself or his family members in some cases. In these challenges, the NSUM Network Scale-Up Method Is mainly based on asking respondents about the number of people they know in their network of drug addicts.
Based on this principle, a statistical questionnaire was designed to
... Show MoreAbstract
The aim of this paper is to investigate and discuss the mechanisms of corrosion of epoxy coatings used for potable water tanks. Two distinct types of Jotun epoxy coatings: Tankguard 412 contained polyamine cured epoxy and Penguard HB contained polyamide cured epoxy, were tested and studied using the electrochemical impedance spectroscopic (EIS) method. The porosity of epoxy coatings was determined using EIS method. The obtained results showed that the two epoxy coatings have excellent behavior when applied and tested in potable water of Basrah city. Polyamine is more resistance to water corrosion compared to polyamide curing epoxy and has high impedance values. Microscopic inspection after te
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show More