In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
Simulated annealing (SA) has been an effective means that can address difficulties related to optimization problems. is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP) is one of the most considerable problems in production planning, in this paper, we present multi-objective linear programming model for APP and optimized by . During the course of optimizing for the APP problem, it uncovered that the capability of was inadequate and its performance was substandard, particularly for a sizable controlled problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state wi
... Show MoreIn this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.
Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreBackground: Tooth decay is still one of most common diseases of childhood, child’s primary teeth are important even though they aretemporary. This study was conducted to assess the physiochemical characteristic of saliva among caries experience preschool children and compared them with caries free matching in age and gender. Then an evaluation was done about these salivary characteristics to dental caries and evaluated the relation of body mass index to dental caries and to salivary variables. Materials and method: After examination 360 children aged 4-5 years of both gender. Caries-experiences was recorded according to dmfs index by (World Health Organization criteria 1987) during pilot study children with caries experience was di
... Show Moreobjective : To assess for Psychological Problems. The study was carried out from 1st of December 2004 to 15th
March, 2005.
Mythology : A descriptive comparative study was conducted for elder in the geriatric home and the community;
A questionnaire was constructed to achieve the purposes of the study; it includes two parts dealing with the
elder demographic characteristics and psychological problems.
A purposive (no probability) sampling of (100) elderly include (50) elderly from the Geriatric Home and (50)
elderly from the community.
Data were collected and analyzed through a descriptive statistical approach (frequency, percentage, mean and
mean of scores, Standard deviation, Relative Sufficiency).
Result : the
Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.
In this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.