In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
The goal of this paper is to expose a new numerical method for solving initial value time-lag of delay differential equations by employing a high order improving formula of Euler method known as third order Euler method. Stability condition is discussed in detail for the proposed technique. Finally some examples are illustrated to verify the validity, efficiency and accuracy of the method.
This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreAcquires this research importance of addressing the subject (environmental problems) with
age group task, a category that children pre-school, and also reflected the importance of
research, because the (environmental problems) constitute a major threat to the continuation
of human life, particularly the children, so the environment is Bmchkladtha within
kindergarten programs represent the basis of a hub of learning where the axis, where the
kindergarten took into account included in the programs in order to help the development of
environmental awareness among children and get them used to the sound practices and
behaviors since childhood .
The research also detected problem-solving skills creative with kids Riyad
In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
Background: Preterm labor and related prematurity are predisposing factors that increase perinatal morbidity and mortality. Acute phase reactants are inflammatory markers which are positive and negative reactants explained by the reaction of reactants to the subclinical infection that are commonly associated with preterm labor.
Objectives: To assess the role of acute phase reactants in pregnant women with preterm delivery.
Patients and method: A case control study conducted in Gynecological Department of Baghdad Teaching Hospital from 1st February 2021 to 30th October 2021, on one hundred pregnant women with gestational age (28weeks - 36weeks+6days) who attended outpatient
... Show MoreWe extended the characterization of strict local minimizers of order two in ward,s
theorem for nonlinear problem to a certain class of nonsmooth semi-infinite problems with inequality constraints in the nonparametric constraint case.
we study how to control the dynamics of excitable systems by using the phase control technique.We study how to control nonlinear semiconductor laser dynamics with optoelectronic feedback using the phase control method. The phase control method uses the phase difference between a small.added frequenc y and the main driving frequency to suppress chaos, which leads to various periodic orbits. The experimental studying for the evaluation of chaos modulation behavior are considered in two conditions, the first condition, when one frequency of the external perturbation is varied, secondly, when two of these perturbations are changed. The chaotic system becomes regular under one frequency or two freq
... Show MoreA series of new 4-(((4-(5-(Aryl)-1,3,4-oxadiazol-2-yl)benzyl)oxy)methyl)-2,6-dimethoxy phenol (6a-i) were synthesized from cyclization of 4-(((4-hydroxy-3,5-dimethoxy benzyl)oxy)methyl)benzohydrazide with substituted carboxylic acid in the presences of phosphorusoxy chloride.The resulting compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to screen their antioxidant properties. Compounds 6i and 6h exhibited significant antioxidant ability in both assay. Furthermore, type of substituent and their position of the aryl attached 1,3,4-oxadiazole ring at position five are play an important roles in enhancing or declining the antio
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.