Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss function to enforce the proposed model in multiple classification, including five labels, one is normal and four others are attacks (Dos, R2L, U2L and Probe). Accuracy metric was used to evaluate the model performance. The proposed model accuracy achieved to 99.45%. Commonly the recognition time is reduced in the NIDS by using feature selection technique. The proposed DNN classifier implemented with feature selection algorithm, and obtained on accuracy reached to 99.27%.
Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreIn recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate p
... Show MoreAccelerates operating managements in the facilities contemporary business environment toward redefining processes and strategies that you need to perform tasks of guaranteeing them continue in an environment performance dominated by economic globalization and the circumstances of uncertainty attempt the creation of a new structure through multiple pages seek to improve profitability and sustainable growth in performance in a climatefocuses on the development of institutional processes, reduce costs and achieve customer satisfaction to meet their demands and expectations are constantly changing. The research was presented structural matrix performance combines methodology Alsigma in order to improve customer satisfaction significantly bet
... Show MoreShadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MoreIn this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.
Environmental Tax is deemed as one of the most important tools that can be used to eliminate the problem of oil –based environment pollution resulted out of oil products processes and this has been significantly approved by the experience in those leading countries in the field of protecting the environment against pollution whereas oil-producing countries which are rather awkward in maintaining the environment such as Iraq , suffer from notorious environmental effects pertaining to oil product processes.
The problem of the research is represented the increased and constant rise in the volume of the environmental pollutants resulted from the processes managed by the intern
... Show MoreCybercrime and risks to children between the problems and solutions( An analytical study in the light of international, Arab and national statistics).
Lies the problem of the study to identify a new type of crime is different from the same traditional character of the crimes or what was customary since human creation up to the information revolution and we enter the era of globalization, which is also called (cyber crime) and their negative impact on all segments of society, especially children, as they the day of the most important social security threats, for all local and international communities alike , and those risks require collective action to various sectors and segments of society ,especially the educated classes in order t
The aim of this research is to construct a cognitive behavior program based on the theory of Meichenbaum in reducing the emotional sensitivity among Intermediate school students. To achieve the aims of the research, two hypotheses were formulated and the experimental design with equal groups was chosen. The population of research and its sample are determined. The test of negative emotional sensitivity, which is constructed by the researcher, was adopted. The test contains (20) items proved validity and reliability as a reliable test by presenting it to a group of arbitrators and experts in education and psychology. An educational program is constructed based on the theory of Meichenbaum. The test was applied to a sample of (60) second i
... Show MorePermeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.
This paper will try to develop the permeability predictive model for one of Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).
Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua
... Show More