Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss function to enforce the proposed model in multiple classification, including five labels, one is normal and four others are attacks (Dos, R2L, U2L and Probe). Accuracy metric was used to evaluate the model performance. The proposed model accuracy achieved to 99.45%. Commonly the recognition time is reduced in the NIDS by using feature selection technique. The proposed DNN classifier implemented with feature selection algorithm, and obtained on accuracy reached to 99.27%.
The success of endodontic therapy is relied on radicular system cleaning, shaping, elimination of micro-organisms, and three dimensional filling of the radicular complex.This study was conducted to develop and assess new root canal sealer incorporating nano-sized bioactive glass into Gutta Flow II. The following concentration was used depend on a pilot study included adding (3%) of 45S5 bioactive glass into the Gutta Flow II. These materials were tested through assessment bioactivity. bioactivity test was undertaken after immersion of the tested samples into PBS for three days, seven days, fourteen days, and twenty eight days using FTIR too. study was found that it’s peaks was appear at level 800-1000 cm-1. The results showed that GFII gr
... Show MoreProxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho
... Show MoreSurface Plasmon Resonance (SPR)-based plastic optical fiber sensor for estimating the concentration and refractive index of sugar in human blood serum. The sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal. The blood serum is placed on gold coated core of an Optical grade plastic optical fiber of 980 µm core diameter.
Tooth restoration one of the most common procedures in dental practice. The replacement of the entire restoration leads to loss of tooth structure and increase risk of pulp injury; replacement is also time consuming and costly. According to the minimally invasive approach when minimal defects, repair is the better choice than the total replacement of the restoration. This study aims to evaluate repair rating versus replacement treatment procedure for defective composite fillings among Iraqi dentists. Material and methodology: A questionnaire survey were designed and distributed to 184 post-graduate dentists in Iraq. The inquiry pertained general information; including their clinical experience in years, their preference in terms of direct c
... Show More