Throughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
We develop the previously published results of Arab by using the function under certain conditions and using G-α-general admissible and triangular α-general admissible to prove coincidence fixed point and common fixed point theorems for two weakly compatible self –mappings in complete b-metric spaces.
In this work, we introduce Fibonacci– Halpern iterative scheme ( FH scheme) in partial ordered Banach space (POB space) for monotone total asymptotically non-expansive mapping (, MTAN mapping) that defined on weakly compact convex subset. We also discuss the results of weak and strong convergence for this scheme.
Throughout this work, compactness condition of m-th iterate of the mapping for some natural m is necessary to ensure strong convergence, while Opial's condition has been employed to show weak convergence. Stability of FH scheme is also studied. A numerical comparison is provided by an example to show that FH scheme is faster than Mann and Halpern iterative
... Show MoreIn this paper, we prove some coincidence and common fixed point theorems for a pair of discontinuous weakly compatible self mappings satisfying generalized contractive condition in the setting of Cone-b- metric space under assumption that the Cone which is used is nonnormal. Our results are generalizations of some recent results.
This paper presents results about the existence of best approximations via nonexpansive type maps defined on modular spaces.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
This paper generalizes and improves the results of Margenstren, by proving that the number of -practical numbers which is defined by has a lower bound in terms of . This bound is more sharper than Mangenstern bound when Further general results are given for the existence of -practical numbers, by proving that the interval contains a -practical for all
Some cases of common fixed point theory for classes of generalized nonexpansive maps are studied. Also, we show that the Picard-Mann scheme can be employed to approximate the unique solution of a mixed-type Volterra-Fredholm functional nonlinear integral equation.
In this paper,there are new considerations about the dual of a modular spaces and weak convergence. Two common fixed point theorems for a -non-expansive mapping defined on a star-shaped weakly compact subset are proved, Here the conditions of affineness, demi-closedness and Opial's property play an active role in the proving our results.
The aim of this paper is to study the convergence of an iteration scheme for multi-valued mappings which defined on a subset of a complete convex real modular. There are two main results, in the first result, we show that the convergence with respect to a multi-valued contraction mapping to a fixed point. And, in the second result, we deal with two different schemes for two multivalued mappings (one of them is a contraction and other has a fixed point) and then we show that the limit point of these two schemes is the same. Moreover, this limit will be the common fixed point the two mappings.